

Omics for clinicians

Christophe Junot

Université Paris-Saclay, CEA, INRAE, MetaboHUB Department of Medicine and Healthcare Technologies <u>christophe.junot@cea.fr</u> A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory

Leroy Hood^{1,} and Mauricio Flores²

¹ Institute for Systems Biology, 401N. Terry Ave, Seattle, WA 98121, USA ² P4 Medicine Institute, 401N. Terry Ave, Seattle, WA 98121, USA

FIGURE 1

In 10 years a virtual cloud of billions of data points will surround each patient. These data will be of many different types and, accordingly, multistage. The challenge will be to convert these data into simple hypotheses about health and disease for the individual.

New Biotechnology • Volume 29, Number 6 • September 2012

Why measuring proteins and metabolites?

Omics as key technologies for personalized medicine

Omics based technologies for biomarker discovery in the medical field

After having been mostly developed by analytical chemists during the 2000's, metabolomics is now part of the tools available for clinical phenotyping

| NATURE |

Succinate is an inflammatory signal that induces IL-1 β through HIF-1 α

G. M. Tannahill¹, A. M. Curtis¹, J. Adamik², E. M. Palsson-McDermott¹, A. F. McGettrick¹, G. Goel³, C. Frezza^{4,5}, N. J. Bernard¹, B. Kelly¹, N. H. Foley¹, L. Zheng⁴, A. Gardet⁶, Z. Tong⁷, S. S. Jany¹, S. C. Corr¹, M. Haneklaus¹, B. E. Caffrey⁸, K. Pierce⁶, S. Walmsley⁹, F. C. Beasley¹⁰, E. Cummins¹¹, V. Nizet¹⁰, M. Whyte⁹, C. T. Taylor¹¹, H. Lin⁷, S. L. Masters¹², E. Gottlieb⁴, V. P. Kelly¹, C. Clish⁶, P. E. Auron^{2*}, R. J. Xavier^{3,5*} & L. A. J. O'Neill¹

| NATURE |

Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation

Nicholas Arpaia^{1,2}, Clarissa Campbell^{1,2}, Xiying Fan^{1,2}, Stanislav Dikiy^{1,2}, Joris van der Veeken^{1,2}, Paul deRoos^{1,2}, Hui Liu³, Justin R. Cross³, Klaus Pfeffer⁴, Paul J. Coffer^{1,2,5} & Alexander Y. Rudensky^{1,2}

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen,^{1,11} George I. Mias,^{1,11} Jennifer Li-Pook-Than,^{1,11} Lihua Jiang,^{1,11} Hugo Y.K. Lam,^{1,12} Rong Chen,^{2,12} Elana Miriami,¹ Konrad J. Karczewski,¹ Manoj Hariharan,¹ Frederick E. Dewey,³ Yong Cheng,¹ Michael J. Clark,¹ Hogune Im,¹ Lukas Habegger,^{6,7} Suganth Balasubramanian,^{6,7} Maeve O'Huallachain,¹ Joel T. Dudley,² Sara Hillenmeyer,¹ Rajini Haraksingh,¹ Donald Sharon,¹ Ghia Euskirchen,¹ Phil Lacroute,¹ Keith Bettinger,¹ Alan P. Boyle,¹ Maya Kasowski,¹ Fabian Grubert,¹ Scott Seki,² Marco Garcia,² Michelle Whirl-Carrillo,¹ Mercedes Gallardo,^{9,10} Maria A. Blasco,⁹ Peter L. Greenberg,⁴ Phyllis Snyder,¹ Teri E. Klein,¹ Russ B. Altman,^{1,5} Atul J. Butte,² Euan A. Ashley,³ Mark Gerstein,^{6,7,8} Kari C. Nadeau,² Hua Tang,¹ and Michael Snyder^{1,*}

Metabolic Phenotypes of Response to Vaccination in Humans

Shuzhao Li,^{1,12} Nicole L. Sullivan,^{2,12,14} Nadine Rouphael,^{1,3} Tianwei Yu,⁴ Sophia Banton,¹ Mohan S. Maddur,² Megan McCausland,² Christopher Chiu,² Jennifer Canniff,⁶ Sheri Dubey,⁶ Ken Liu,¹ ViLinh Tran,¹ Thomas Hagan,² Sai Duraisingham,² Andreas Wieland,² Aneesh K. Mehta,¹ Jennifer A. Whitaker,^{1,13} Shankar Subramaniam,⁷ Dean P. Jones,¹ Alessandro Sette,⁸ Kalpit Vora,⁶ Adriana Weinberg,⁶ Mark J. Mulligan,^{1,3} Helder I. Nakaya,^{9,10} Myron Levin,⁶ Rafi Ahmed,^{2,11} and Bali Pulendran^{2,10,15,*}

Metabolomics in the field of hepatology

> 2000 publications (Pubmed database)

Search query: (metabolom*[Title/Abstract] OR metabonom*[Title/Abstract] OR metabotyp*[Title/Abstract]) AND ((liver disease)[Title/Abstract] OR hepatitis[Title/Abstract] OR cirrhosis[Title/Abstract] OR (liver transplantation)[Title/Abstract] OR (hepatocellular carcinoma)[Title/Abstract])

Recent developments:

multi-omics integrated studies ++ impact of the gut microbiota ++

medicine

Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women

Lesley Hoyles ⁽¹⁾¹⁰, José-Manuel Fernández-Real^{2,10*}, Massimo Federici ^{(3)10*}, Matteo Serino ^(4,5), James Abbott ⁽¹⁾, Julie Charpentier^{4,5}, Christophe Heymes^{4,5}, Jèssica Latorre Luque ⁽²⁾², Elodie Anthony⁶, Richard H. Barton¹, Julien Chilloux ⁽³⁾, Antonis Myridakis ⁽³⁾, Laura Martinez-Gili ⁽³⁾, José Maria Moreno-Navarrete², Fadila Benhamed⁶, Vincent Azalbert^{4,5}, Vincent Blasco-Baque^{4,5}, Josep Puig², Gemma Xifra², Wifredo Ricart², Christopher Tomlinson ⁽³⁾, Mark Woodbridge ⁽³⁾, Marina Cardellini³, Francesca Davato³, Iris Cardolini³, Ottavia Porzio^{7,8}, Paolo Gentileschi⁷, Frédéric Lopez^{4,5}, Fabienne Foufelle⁹, Sarah A. Butcher ⁽³⁾, Elaine Holmes¹, Jeremy K. Nicholson¹, Catherine Postic⁶, Rémy Burcelin^{4,5*} and Marc-Emmanuel Dumas ^{(3)*}

Shotgun sequencing of fecal metagenome Host phenome (hepatic transcriptome, plasma and urine metabolomics)

Molecular networks linking the gut microbiome and the host phenome to hepatic steatosis.

Steatosis: low microbial gene richness, hepatic inflammation, dysregulation of aromatic and branched chain AA metabolism.

Microbiota transplants and chronic treatment with phenylacetic acid trigger steatosis and dysregulation of BCAA metabolism

Orchestration of Tryptophan-Kynurenine Pathway, Acute Decompensation, and Acute-on-Chronic Liver Failure in Cirrhosis

Joan Clària D, ^{1,2}* Richard Moreau, ^{1,3}* François Fenaille, ⁴ Alex Amorós, ¹ Christophe Junot, ⁴ Henning Gronback, ⁵ Minneke J. Coenraad, ⁶ Alain Pruvost, ⁷ Aurélie Ghettas, ⁷ Emeline Chu-Van, ⁴ Cristina López-Vicario, ² Karl Oettl, ⁸ Paolo Caraceni, ⁹ Carlo Alessandria, ¹⁰ Jonel Trebicka D, ^{1,11,12} Marco Pavesi, ¹ Carme Deulofeu, ¹ Agustin Albillos, ¹³ Thierry Gustot, ¹⁴ Tania M. Welzel, ¹² Javier Fernández, ^{1,2} Rudolf E. Stauber, ⁸ Faouzi Saliba, ¹⁵ Noémie Butin, ⁴ Benoit Colsch, ⁴ Christophe Moreno, ¹⁴ François Durand, ³ Frederik Nevens, ¹⁶ Rafael Bañares, ¹⁷ Daniel Benten, ¹⁸ Pere Ginès, ² Alexander Gerbes, ¹⁹ Rajiv Jalan, ²⁰ Paolo Angeli, ^{1,21} Mauro Bernardi D, ⁹ and Vicente Arroyo¹; for the CANONIC Study Investigators of the EASL Clif Consortium, Grifols Chair and the European Foundation for the Study of Chronic Liver Failure (EF Clif)

HEPATOLOGY, VOL. 69, NO. 4, 2019

Kynurenine pathway is activated in patient with acute decompensation and acute-onchronic liver failure

Confirmation by a quantitative LC-MS/MS assay for kynurenic acid, quinolinic acid, kynurenine and tryptophan on 234 samples (validation cohort)

JOURNAL OF HEPATOLOGY

Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF

Richard Moreau^{1,2,*,†}, Joan Clària^{1,3,4,†}, Ferran Aguilar^{1,†}, François Fenaille^{5,†}, Juan José Lozano⁴, Christophe Junot⁵, Benoit Colsch⁵, Paolo Caraceni⁶, Jonel Trebicka^{1,7}, Marco Pavesi¹, Carlo Alessandria⁸, Frederik Nevens⁹, Faouzi Saliba¹⁰, Tania M. Welzel⁷, Agustin Albillos¹¹, Thierry Gustot¹², Javier Fernández^{1,3,4}, Christophe Moreno¹², Maurizio Baldassarre⁶, Giacomo Zaccherini⁶, Salvatore Piano¹³, Sara Montagnese¹³, Victor Vargas¹⁴, Joan Genescà¹⁴, Elsa Solà^{3,4}, William Bernal¹⁵, Noémie Butin⁵, Thaïs Hautbergue⁶, Sophie Cholet⁵,
Florence Castelli⁵, Christian Jansen¹⁶, Christian Steib¹⁷, Daniela Campion⁸, Raj Mookerjee¹⁸, Miguel Rodríguez-Candía¹¹, German Soriano¹⁹, François Durand², Daniel Benten²⁰, Rafael Bañares²¹, Rudolf E. Stauber²², Henning Gronbaek²³, Minneke J. Coenraad²⁴, Pere Ginès^{3,4}, Alexander Gerbes¹⁷, Rajiv Jalan^{11,8}, Mauro Bernardi⁶, Vicente Arroyo¹, Paolo Angel^{11,13}, for the CANONIC Study Investigators of the EASL Clif Consortium, Grifols Chair and the European Foundation for the Study of Chronic Liver Failure (EF Clif)

JOURNAL OF HEPATOLOGY

Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF

- The ACLF associated metabolite cluster correlates with systemic inflammation.
- It also reflects:
- increased proteolysis and lipolysis,
- changes in intracellular metabolism in response to the proliferation of innate immunity cells,
- Reduced mitochondrial oxydation,

Assessing the role of amino acids in systemic inflammation and JOURNAL organ failure in patients with ACLF **OF HEPATOLOGY** Giacomo Zaccherini^{1,2,†}, Ferran Aguilar^{1,†}, Paolo Caraceni², Joan Clària^{1,3,4}, Juan José Lozano⁴, François Fenaille⁵, Florence Castelli⁵, Christophe Junot⁵, Anna Curto¹, Chiara Formentin⁶, Emmanuel Weiss^{1,7}, Mauro Bernardi², Rajiv Jalan^{1,8}, Paolo Angeli^{1,6}, Richard Moreau^{1,9,10,*,‡} Vicente Arroyo^{1,‡} Purine synthesis - MTR Purine synthesis Methionine salvage pathwav 15'-Deoxy-5'-(methylthio)adenosin (MTA) Polyamine DMG N10-Formvi THF Folate N⁵-Methyl THF Spermine synthesis cycle B12-Methionine Betaine cycle Glycine Spermidine → *N8-Acetylspermidine **†N-Formyl-L-**SAM Choline Methionine Homocysteine 14-Acetamidobutanoate N⁵,N¹⁰-Methylene THF Putrescine Pyrimidine + Proline SAH 4 GABA synthesis Cystathionine CHa ranssulfuratio Argini pathway. Methylation reactions [†]Glutamat Glycine GSH ← GSSG [†]Pyroglutamate Glutathione synthesis De novo pyrimidine synthesis ATP consumption De novo purine synthesis ATP consumption 4 to 7 ATP 8 to 9 ATP [†]Glutamine PRPP Aspartate, HCO3, ATP Glutamine, aspartate, ATP, CO2 Glycine Serine N¹⁰-Formyl THF Dihydroorotate AICAR Orotate GMP IMP AMP -PRPP PRPP PRPP PRPP Oritine-5'-phosphate Hypoxanthine Guanine UMP

Purine salvage pathway

Reanalysis of the blood metabolomic data of the CANONIC study

- Blood AA fuel protein and nucleotide synthesis required for intense systemic inflammation.
- Extensive catabolism of ketogenic AA to produce energy substrates in peripheral organs

Which questions do we now address?

- Improve stratification power regarding the decompensation of cirrhosis
- Provide new insights into pathophysiology of ACLF (biomarkers of precipitants and organ failure)
- Response to treatment
- Pronostic biomarkers that could be translated into clinics

Serum Levels of Metabolites Produced by Intestinal Microbes and Lipid Moieties Independently Associated With Acute on Chronic Liver Failure and Death in Patients With Cirrhosis

Bajaj J.S. et al. Gastroenterology, 2020

Serum samples of 602 patients collected at admission

88 developed ACLF (15%)43 died in the hospital (7%)72 died within 30 days (12%)

Metabolomic signature associated with ACLF and death:

- Increased levels of metabolites of microbioal origin (aromatic compounds, secondary biles acids, benzoic acid)
- Increased levels of estrogen metabolites
- ✓ Decreased levels of phospholipids

Over the last ten years, the number of biomarkers derived from omics based approaches, approved by regulatory agencies and used in clinical settings remains far from expectations!

Clinical Chemistry 60:10 1256–1257 (2014)

Where Are All the New Omics-Based Tests?

Patrick M. Bossuyt^{1*}

Several challenges need to be overcome to foster the implementation of omics in personalized medicine and in clinical practice:

- data production for biomarker discovery and validation,
- Translation of omics signatures into assays for medical laboratories
- Point of care tests.

The main challenges related to omics data production

- Large multi-center cohorts as well as validation cohorts to increase statistical power and biomarker specificity and avoid confounding factors.
- Standardized data production workflow with improved robustness and capability of automated interpretation of the huge amount of data generated.
- Linked untargeted and targeted quantitative approaches for proper analytical validation of biomarker candidates.
- ✓ Improved metabolome coverage and metabolite identification confidence level.

The metabolomic workflow

Batch to batch effects may compromise data re-use in the frame of untargeted metabolomics approaches

part 1 (Dec. 2016)

part 2 (Oct. 2017)

	B	C	G	н	1	1	DE	8	ACLF_deg	ree	ACL	- 3	ACLF 3	ACLF 3	ACLF 3	
1	5	Group	1	1	. 1	1	52									
-		CubCrown			11			-		_	_		_			
2		Subgroup	11	11	11	11		. 9	mz	💌 RT (min)	- 59	3 💌	624 💌	686 💌	697 🔄	Annotation 💌
3	mz 🖃	RT (mi 🔻	2-C1 🔻	2-C4 💌	2-C9 🔻	2-E1 🔻	Annotation	10	75.00	85 7.51	73020	6.665	1779855.63	785311.344	924867.7302	2 NA
862	203.0541	7.49	99362.53	9722.862	18559	20087.36	NA	360	163.03	97 1.62	57444	.1392	738962.101	30500.6157	73436.71297	7 1018_Phenylpyruvic acid_M-H_Mono_1.36_TRU
863	203.0559	6.41	71015.29	68043.2	8875.421	51001.99	NA	367	148.04	35 7.80	14948	L.729	936508.169	1805640.76	631370.035	
864	203.0673	8.48	65797.6	83563.82	50967.94	45883.1	NA	391	245.09	15 1.80 28 2.24	91555	0609	245910319	608540 702	321/9/ 5/51	1107 N-acetyl-Di-tryntonban M-H Mono 2.31
865	203 0673	5 19	70188 11	247774 6	37803 5	36702.89	NA	394	150.04	20 2.24	23915	9 356	245510515	249180 691	142341 5824	
866	203 0824	3.81	9972380	12998564	7235510	14344017	I-Tryptophan M-H Mono 3	413	152.00	17 4.37	17451	03.39	1928931.36	60546.13	73318.36111	L NA
867	203.0825	1.66	481963 5	153078.8	2/9169 7	376764 5		414	152.01	16 6.81	46162	.0195	116316.458	376170.208	685457.7719	9 NA
060	203.0023	2.06	170710 7	50072 22	00001 0/	1220/19/2	NA	415	152.01	96 4.07	26822	8.281	103151.907	38430.337	35133.68502	2 NA
000	203.0924	2.00	27412.25	0702 270	16522.15	123043.2	NA	531	165.07	64 4.87	70191	3.889	762910.962	8867.34299	283935.9458	3 NA
005	203.0945	2.05	27412.23	3705.276	10355.13	25407.25		532	165.07	64 5.86	25476	9.039	1463467.8	852096.783	644437.517	7 NA
870	203.1037	9.02	6071.539	3296.272	3397.401	4249.104	NA	533	165.07	66 6.24	88175	1329	298668.137	154191.629	249462.7123	3 NA
8/1	203.9972	2.25	154.3777	4005.641	392.0382	24/65.69	NA	534	188.03	48 1.89	13575	2.201	5227741.67	236966.038	2591189.663	3 265_Kynurenic acid_M-H_Mono_2.28_TRUE
872	204.0137	6.68	11301.86	3702.277	15789.83	8371.775	NA	536	156.01	.75 3.58	16735	58.71	3379409.17	436535.286	971624.4962	2 NA
873	204.0334	9.44	4253.019	1663.416	2842.252	6606.748	NA	537	166.04	33 8.07	50696	9.679	1734812.08	785166.425	438652.4626	5 NA
874	204.0512	7.80	21974.09	4484.383	15518.31	12721.81	NA	539	167.07	10 1.52	39559	1.379	1063366.32	484457.517	76032.43282	
875	204.0665	2.44	928595.4	1092329	599208.1	2164618	Indolelactic acid_M-H_Mono	1314	257.95	80 6.36	89169	1019	15041496 1	28222.1929	5918.639/30	NA 280 DL Trintenhan M.L. Mone, 2.85 TRUE/201
876	204.0706	8.49	2447.438	2527.517	1229.98	3372.858	NA	1315	203.08	21 4.13	2759 0	428.2	15041480.1	1152930.38	40837793.8	289_DL-Tryptopnan_M-H_Mono_3.86_TROE/29.
90 <mark>6</mark>	207.0773	3.34	757032.3	51676.82	32755.66	228438.6	L-Kynurenine_M-H_Mono_3.	1310	258.04	55 6.00	27648	4 614	1955110.89	75532 966	419095 6514	
907	207.0871	3.41	723737.9	46186.98	31498.62	216209.4	NA	1318	258.05	57 5.53	26770	5.802	645093.463	89281.7804	1538628.442	2 NA
908	207.3543	3.52	19762.05	27778.62	26139.36	18982.6	NA	1313	258.05	59 6.86	26489	3.194	754727.558	1015059.22	211103.4957	7 NA
909	207.3544	7.76	13739.32	18924.93	14243.27	21149.81	NA	1320	258.06	15 8.20	55266	4.559	662226.708	581167.156	256808.8165	5 NA
947	212.0023	2.32	2892421	2778146	11108.61	679913.5	Indoxyl sulfate_M-H_Mono_2	1706	207.07	71 3.29	34369	3.494	2439568.27	180077.537	527768.1569	50_L-Kynurenine_M-H_Mono_3.17_TRUE
948	212.0557	7.07	5683.415	19101.76	4070.753	11798.26	NA	1707	326.09	90 2.26	1847	.3073	2723.35557	12463.513	275505.442	2 NA
369	247.0992	2.09	14123.6	5849.136	9831.569	10916.39	N-acetyl-DL-tryptophan M-H	1708	326.10	90 5.54	46432	5.502	52313.5659	342254.98	86492.86135	NA
370	247.1264	1.74	12202.12	23413.05	25843.08	32935.61	NA	1709	326.18	71 1.27	12265	8.306	454841.904	157195.949	67211.46772	2 NA
371	247.1357	1.49	104914.7	31345.87	82394.97	60224.55	NA									

Solution of annotated compounds after normalization

300 annotated metabolites included for analysis (2016, 100 samples)

156 annotated metabolites included for analysis (2019, 900 samples)

Batch to batch effects may compromise data re-use in the frame of untargeted metabolomics approaches

Injection Order	Sample
1	Blank
2	Blank
3	QC
4	QC
5	QC
6	QC
7	QC
8	Blank
9	8x dil. QC
10	4x dil. QC
11	2x dil. QC
12	QC
13	Blank
14	QC
15	Sample 1
16	Sample 2
17	Sample 3
24	Sample 10
25	Blank
26	QC
27	Sample 11
36	Sample 20
37	Blank
38	QC

QCs for equilibration

Diluted QCs for data

treatment (n=3 each)

10 biological samples

1. Repeatability filter

Correct drift across batches

(Low Order non linear locally Function)

Cleveland, J. Am. Stat. Assoc. 1979 Dunn WB, Nat. Protoc. 2011

Data sharing: the need for standardization

Towards standards for human fecal sample processing in metagenomic studies

NATURE BIOTECHNOLOGY VOLUME 35 NUMBER 11 NOVEMBER 2017

NIST plasma samples (SRM 1950) for metabolomics and lipidomics

Journal of Lipid Research: Full Article

Harmonizing Lipidomics: NIST Interlaboratory Comparison Exercise for Lipidomics using Standard Reference Material 1950 – Metabolites in Frozen Human Plasma

John A. Bowden*1, Alan Heckert2, Candice Z. Ulmer1, Christina M. Jones1, Jeremy P. Koelmel3

Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography–High-Resolution Mass Spectrometry Platforms

Tomas Cajka,[†] Jennifer T. Smilowitz,^{‡,§} Oliver Fiehn^{*,†,⊥}

Annotation: we don't exactly produce the same kind of data and we don't process it in the same way

Damont A et al., unpublished

Castelli et al., Anal. Bioanal. Chem., 2021

The need of metabolite identification/characterization reporting standards...

Metabolomics (2007) 3:211-221 DOI 10.1007/s11306-007-0082-2

ORIGINAL ARTICLE

Proposed minimum reporting standards for chemical analysis

Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

Lloyd W. Sumner · Alexander Amberg · Dave Barrett · Michael H. Beale · Richard Beger · Clare A. Daykin · Teresa W.-M. Fan · Oliver Fiehn · Royston Goodacre · Julian L. Griffin · Thomas Hankemeier · Nigel Hardy · James Harnly · Richard Higashi · Joachim Kopka · Andrew N. Lane · John C. Lindon · Philip Marriott · Andrew W. Nicholls · Michael D. Reily · John J. Thaden · Mark R. Viant

- Identified compounds (see below).
- Putatively annotated compounds (e.g. without chemical reference standards, based upon physicochemical properties and/or spectral similarity with public/commercial spectral libraries).
- Putatively characterized compound classes (e.g. based upon characteristic physicochemical properties of a chemical class of compounds, or by spectral similarity to known compounds of a chemical class).
- Unknown compounds—although unidentified or unclassified these metabolites can still be differentiated and quantified based upon spectral data.

Metabolite identification task group...

Update under progress

Analytical validation of biomarker candidates: the need for targeted quantitative metabolomics approaches.

- ¹³C- and/or ¹⁵N based Metabolic

labeling (Mashego, J. Biotechnol. Bioeng., 2004; Lafaye, anal. Chem., 2005...)

- Chemical labeling
- Derivatization: dansyl chloride...

(Guo K, Anal Chem., 2009...)

Castelli et al., Anal. Bioanal. Chem., 2021

How to transfer metabolomics signatures from the research laboratories to the field?

 \checkmark Omics signatures are complex and need to be simplified.

✓ There are small concentration variations from one group the other

- ✓ Metabolomics in clinical chemistry laboratories
- ✓ Toward point of care tests for metabolomics

Metabolomics and proteomics in clinical chemistry laboratories

- ✓ Quantitative liquid chromatography coupled to mass spectrometry assays
- ✓ Enzyme assays

✓ Immunoassays

Toward point of care tests for omics: lateral flow immunoassays

Toward point of care tests for metabolomics: biosensors

Quencher

Aptamers

MIP: Molecularly

Imprinted Polymers

Quenched 0.1 µL blood Target light injection 100 µL Receptor Amino Acid Aptamer Target Target FRET complex a. b. PDMS Transduction/detection: 94 Glucose 🚖 o-Phenylenediamine Glucose 対 Electrochemistry +++ 0.1 M NaOH Cavities AuNPo (1) Bare gold (2) Multistep amperometry (3) Alkaline treatment for (4) Glucose based polymerization rebinding electrode template removal

(Castelli et al., Anal. Bioanal. Chem., 2021)

Take home message

Metabolomics tools (data acquisition and treatment) **are constantly improving** and are nowadays used in the field of personalized medicine

Improvement of data interoperability and reusability of untargeted metabolomic data is a key priority, which has to be addressed in a context of permanent and rapid technological evolution.

Biomarker identification	Biomarker validation	Rapid diagnostic tests Biosensors??
Omics Make it more reliable Share it better Integrate it with other data In situ analyses Single cell technologies	CRUCIAL STEP Multiplex quantitative analyses on cohort samples	Prick the fingerCollect bloodTransfer the sampleAdd the diluentRead the results

Many thanks to my colleagues

And to you for your attention