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ALD is a common chronic liver disease that frequently leads 
to cirrhosis1. With rising incidence rates, ALD has become 
the leading indication of liver transplantation2 and is respon-

sible for more than half of all liver-related deaths3,4. ALD progresses 
through a range of histological lesions, starting with alcohol-related 
fatty liver, to subclinical steatohepatitis featuring hepatic inflam-
mation, which drives progressive fibrosis ultimately leading to 
cirrhosis. Approximately 75% of patients with ALD are currently 
diagnosed after decompensated cirrhosis has occurred, making 
them ineligible for optimal pharmaceutical treatment of alcohol use 
disorder5. Detection of ALD at an early, asymptomatic stage could 
provide opportunities for slowing or preventing disease progres-
sion6,7 via intensified alcohol rehabilitation treatment and treatment 
for metabolic comorbidity, which is known to aggravate hepatic 
inflammation and steatosis8. Early detection of ALD could also have 
socioeconomic benefits, as seen with very cost-effective early detec-
tion of liver fibrosis in primary care when using the enhanced liver 
fibrosis (ELF) blood test combined with imaging-based tests9.

However, the slow and asymptomatic nature of disease pro-
gression renders diagnosis at an early stage challenging. Accurate 
diagnosis of liver disease requires biopsy, a procedure that causes 
major complications in 1% of cases10, and existing noninvasive 
biomarkers have limited accuracy in the early disease stages, thus 
severely reducing opportunities for timely disease detection and 

intervention11. Therefore, there is a pressing need for minimally 
invasive diagnostic strategies to screen patients in at-risk popula-
tions such as individuals with a history of alcohol misuse, obesity, 
inactivity and diabetes. Prognostic markers could help patients with 
ALD through better disease management to avoid decompensated 
cirrhosis. Furthermore, the molecular pathophysiology of ALD is 
incompletely understood and there are currently no liver-specific 
interventions against the condition. Characterization of liver and 
plasma proteome dynamics across the full spectrum of disease 
could provide new biological insights into disease mechanisms and 
provide insights into new therapeutic options.

Biomarker discovery efforts have typically focused on individual 
biomolecules12,13 and have had a low acceptance rate in the clinic. 
Systems-wide studies would be attractive, especially if they could 
connect circulating levels and dysregulation in the diseased organ14,15. 
Such global data can be used to build machine-learning-based  
classification models16,17.

Recent advances in MS-based proteomics have greatly extended 
its reach in biomedical and clinical research18–20. It enables specific-
ity in the identification and quantification of hundreds to thousands 
of proteins present in biological or clinical samples, making it suit-
able in principle for the study of disease mechanisms and identifica-
tion of biomarkers. In the context of complex diseases, MS-based 
proteomics could shift the focus to biomarker panels rather than 
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individual proteins. However, to be effective as a clinical biomarker 
discovery platform, MS-based proteomics has to be performed in 
a robust and accurate manner and applied to large patient cohorts. 
To this end, our group has developed a plasma proteome-profiling 
workflow with which we have already identified circulating proteins 
associated with nonalcoholic fatty liver disease (NAFLD)21,22.

Here, we used MS-based proteomics to analyze paired liver tis-
sue and plasma samples, and clinical outcomes, from a large cohort 
of patients with a history of alcohol misuse and with asymptomatic 
ALD representing early stages on the disease spectrum, and from 
healthy controls with age and gender matched to the ALD cohort, 
totaling 596 participants. We then validated the findings in an inde-
pendent ALD cohort. Our goal was to systematically characterize 
proteome changes in liver and plasma in a pathological feature- and 
disease-stage-dependent manner by performing separate and inte-
grative analysis of the two tissue types. In addition, we aimed to 
explore the potential of plasma proteomics as a clinical diagnostic 
and prognostic tool for liver disease by assessing its predictive capa-
bility in the context of existing best-in-class clinical tests12,23,24. We 
hypothesized that MS-based plasma proteomics could identify bio-
marker panels of diagnostic and prognostic value in the clinic, and 
that analysis of matched liver tissue and plasma proteomes could 
reveal insights about the pathophysiology of ALD and determine 
the tissue origin of potential circulating biomarkers.

We observed that both liver and plasma proteomes undergo 
extensive remodeling during ALD, with fibrosis having the larg-
est effect followed by hepatic inflammation and steatosis. By the 
application of machine learning to plasma proteomics data, we 
defined biomarker panels for the simultaneous detection of ‘sig-
nificant’ fibrosis (fibrosis stage ≥F2), mild inflammatory activity 
and any steatosis. We benchmarked these biomarker panel-based 
models against 15 existing tests in the discovery cohort and 11 tests 
in the validation cohort that demonstrated superior or comparable 
performance to in-class comparators for significant fibrosis and 
mild inflammatory activity (judged by F1 score, balanced accuracy  
and/or ROC–AUC). Extraction of patient follow-up data from elec-
tronic health records further demonstrated high prognostic perfor-
mance for liver-related events and all-cause mortality. We provide 
an open-source interactive data visualization tool for data explora-
tion (Supplementary Fig. 1).

Results
Patients, data collection and study design. The study popula-
tion consisted of participants from three cohorts: (1) gut-and-liver 
axis–alcohol-related liver disease (GALA–ALD), termed the deri-
vation cohort (n = 459, prospective cohort with follow-up data 
available); (2) gut-and-liver axis–healthy participants (GALA–HP), 
a cross-sectional cohort of healthy controls matched to GALA–
ALD from the GALAXY Horizon2020 consortium (livergalaxy.eu) 
(n = 137); and (3) the independent ALD validation cohort (n = 63, 
a cross-sectional cohort from a screening study for ALD (clinical-
trials.gov ID NCT03308916; https://open.rsyd.dk/OpenProjects/
openProject.jsp?openNo=475&lang=da), with patients receiving a 
liver biopsy in the case of elevated liver stiffness as evidence of liver 
fibrosis) (Table 1).

The GALA–ALD cohort is a diagnostic-test cohort of consecu-
tively recruited patients with a history of harmful drinking. They 
represent asymptomatic ALD within the full spectrum of early 
stages of the disease, because any individuals with known chronic 
liver disease and/or clear signs of decompensated, late-stage dis-
ease were excluded. Investigations on a subset of the cohort are 
described in detail elsewhere12,23,24. The same pathologist scored all 
liver biopsies, blinded to clinical patient information, according to 
the NAFLD activity score–clinical reasearch network (NAS–CRN)25 
for fibrosis (F0–4), lobular inflammation (0–3), ballooning (0–2) 
and steatosis (0–3). We defined inflammatory activity as the sum 

of lobular inflammation and ballooning. We used the derivation 
cohort for bioinformatics analysis, machine-learning-based bio-
marker panel derivation for significant fibrosis (≥F2), mild inflam-
matory activity (≥I2) and any steatosis (≥S1), and assessment of 
the prognostic ability of the derived marker panels. The GALA–HP 
and validation cohorts were used for validation of the ability of  
the proteomics biomarker panels to rule out and rule in disease  
(Fig. 1). Detailed participant recruitment inclusion and exclusion 
criteria can be found for all cohorts in Methods.

We acquired plasma proteome profiles of all participants 
(n = 659) using a data-independent acquisition (DIA) strategy26 
and a single-run workflow on an Evosep One liquid chromatog-
raphy system27 (Evosep Biosystems) coupled online to an Orbitrap 
Exploris 480 mass spectrometer (Thermo Fisher Scientific). In  
addition, we analyzed 79 liver biopsy proteomes in the deriva-
tion cohort with a DIA method in 100-min gradients, quantifying 

Table 1 | Baseline participant characteristics

Variable GALA–ALD 
(n = 459)

GALA–HP 
(n = 137)

ALD validation 
cohort (n = 63)

Age 57 ± (13) 53 ± (13) 58 ± (14)

BMI (kg m–2) 27.4 ± (6.7) 26.1 ± (4.7) 30.2 ± (8.1)

Male gender 349 (76%) 86 (63%) 54 (86%)

Female gender 110 (24%) 51 (37%) 9 (14%)

ALT (U l–1) 31 ± (26) 24 ± (11) 41 ± (35.5)

AST (U l–1) 34 ± (26) 25 ± (7) 34 ± (31.5)

Alkaline phosphatase 
(U l–1)

80 ± (44) 64 ± (21) 83 ± (31.5)

GGT (U l–1) 72 ± (156) 22 ± (12) 97 ± (222.3)

Albumin (g l–1) 42 ± (5) 44 ± (3) 45 ± (4)

Bilirubin (µmol l–1) 10 ± (7) 11 ± (6) 8.5 ± (6)

Platelet count (109 l–1) 232 ± (100) 236 ± (61) 212.5 ± (73.8)

MELD score 6 ± (2) 6 ± (1) 7 ± (2)

HbA1C (mmol mol–1) 36 ± (6) 35 ± (5) 37 ± (9)

Total cholesterol 
(mmol l–1)

5 ± (1.6) 5.2 ± (1.1) 4.8 ± (1.9)

Drinking history (years 
of excessive drinking)

16 ± (18) NA 15 ± (21)

ELF 9.3 ± (2) NA 10 ± (1.4)

FIB-4 index 1.5 ± (1.5) NA 1.6 ± (1.4)

TE (kPa) 6.5 ± (6.8) 4.3 ± (1.7) 9.2 ± (5.4)

2D-SWE (kPa) 8.3 ± (8.4) 5.5 ± (1.3) 9 ± (7.4)

Abstaining from 
alcohol at time of 
inclusion

192 (42%) 13 (9%) 21 (33%)

Fibrosis stage 
0/1/2/3/4

36/124/106/ 
27/67

NA 4/15/21/13/9

Steatosis 0/1/2/3 156/85/72/39 NA 19/20/12/8

Ballooning 0/1/2 178/108/66 NA 37/16/6

Lobular inflammation 
0/1/2/3

80/160/84/28 NA 10/30/18/1

Ballooning + lobular 
inflammation 
0/1/2/3/4/5

72/91/82/53/ 
31/23

NA 10/21/13/10/5

All summary data are medians ± interquartile range (IQR) or sums with proportions. Histological 
staging was performed according to the NAFLD activity score (NAS); 98 patients in the GALA–ALD 
cohort did not have a biopsy due to low liver stiffness (FibroScan <6 kPa). GGT, gamma-glutamyl 
transferase. NA, not applicable.
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5,515 proteins in total. Both plasma and liver proteomics data were 
acquired using optimized methods enabled by MaxQuant.Live28 
with a signal processing algorithm termed PhiSDM29 for rapid liq-
uid chromatography–tandem MS (LC–MS/MS) cycle times. An 
overview of proteomics workflow and dataset quality can be found 
in Extended Data Figs. 1 and 2. Stage distribution of fibrosis, inflam-
matory activity and steatosis in the liver and the plasma proteomics 
dataset in the derivation cohort, as well as that in the plasma pro-
teomics dataset in the validation cohort, can be found in Extended 
Data Fig. 3a–c, respectively.

We benchmarked the model performance against 15 of the most 
widely validated, commercially available, European Medicines 
Agency/Food & Drug administration (FDA)-approved and widely 
used imaging and serum tests for liver fibrosis, inflammation and 
steatosis in the derivation cohort: transient elastography24,30 (TE; 
FibroScan, Echosens), two-dimensional shear-wave elastography24 
(2D-SWE), the ELF blood test12,31,32, P3NP31,33,34, FibroTest12,35, the 
Fibrosis-4 (FIB-4) index36, the Forns index37 and the AST/platelet 
ratio index (APRI)38 for fibrosis; cytokeratin-18-based markers M30 
and M65 and their ratio M30/M65 (ref. 39), together with alanine 
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Fig. 1 | A framework for biomarker discovery in liver disease. High-throughput, MS-based proteomics technology used to profile paired liver and 
plasma samples from 459 patients with ALD and 137 matched healthy controls. Proteome dysregulation in liver and plasma were integrated to capture 
disease-stage-relevant protein signatures in the bloodstream that were concordant with the liver. Last, a machine learning model was built to identify early 
stages of liver fibrosis, inflammatory activity and steatosis. We used the diagnostic models to assess their prognostic capabilities. We also validated model 
performance to rule out disease in low-incidence populations. In addition, the diagnostic capability of identified protein marker panels was evaluated in an 
independent cohort of 63 patients with ALD.
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aminotransferase (ALT)40, aspartate aminotransferase (AST)40 and 
AST/ALT ratio (AAR)41 for inflammation; controlled attenuation 
parameter (CAP) for steatosis; and 11 of the above tests in the vali-
dation cohort.

Impact of hepatic lesions on liver and plasma proteomes. 
Differential abundance analysis in the liver proteome (Methods) 
revealed 658 proteins significantly dysregulated (false discovery rate 
(FDR)-adjusted P < 0.05) across stages of fibrosis, 135 of inflam-
matory activity and 68 of steatosis, totaling 717 unique proteins 
accounting for 13% of the total quantified liver proteome (Fig. 2a 
and Supplementary Table 1). Fibrosis was associated with the larg-
est effect on the liver proteome, followed by inflammation, and 84% 
of all proteins dysregulated in inflammation were also found to be 
dysregulated in fibrosis. The majority of dysregulated proteins were 
upregulated as fibrosis stage increased (63% (454 proteins) versus 
37% (263 proteins) downregulated; Fig. 2b). When grouping dys-
regulated proteins according to annotations of the Human Protein 
Atlas42, 87% of the proteins annotated as ‘liver specific’ (Methods) 
were downregulated in liver tissue as fibrosis stage increased; in 
contrast, 80% of the proteins annotated as ‘secreted’ were upregu-
lated (Fig. 2c). This is similar to what we previously reported in a 
study of NAFLD and cirrhosis21.

Approximately 25% of the upregulated proteins belong to the 
immune system (Supplementary Table 2). Signal transduction path-
ways were the second most highly over-represented category as 
fibrosis progressed (22% of total upregulated proteins) and receptor 
tyrosine kinase signaling was upregulated, in agreement with exist-
ing literature that both TGF-β and platelet-derived growth factor 
play a role in fibrogenesis43. Specifically, MAPK1, MAPK3, ROCK2 
and AKT2, phosphatases PTPN6 and PTPN11, transcription fac-
tor STAT1 and small GTPases RAC1 and RAP1B were upregulated 
between fibrosis stages F0 and F4 (Supplementary Table 1). Signaling 
by Rho GTPase (40 proteins) and GPCR (22 proteins) were also sig-
nificantly upregulated. Additionally, proteins in extracellular matrix 
(ECM) organization were significantly upregulated (44 proteins, 
including collagen types I, III, IV, V, VI, XII and XIV, fibronectin, 
laminin, lumican, perlecan, fibulins FBLN1, FBLN2 and FBLN5 
and latent-transforming growth factor beta-binding proteins LTBP1 
and LTBP4). Proteins observed to be downregulated were largely 
metabolism related (158 proteins, 60%; Supplementary Table 3).

Correlation analysis (Methods) resulted in 1,235 proteins sig-
nificantly correlated with stages of fibrosis, 873 with inflammatory 
activity and 175 with steatosis score (Supplementary Tables 4–6). 
Among the top 20 proteins most correlated with stages of fibrosis 
were prominent liver-secreted proteins (Fig. 2d) with roles in cell–
ECM interactions (TGFBI and EMILIN1 (ref. 44)), as well as those 
previously associated with hepatic fibrosis (IGFBP7 (ref. 45) and 
TNXB46). Approximately 50% of the top 20 inflammation-associated 
proteins are cytoskeletal proteins, potentially indicating cellular 
structural changes in the inflamed liver (Fig. 2d), while the lipid 
droplet protein PLIN2 and fatty acid-binding protein 4 (FABP4), 
an adipokine previously identified as a predictive marker for pro-
gression from simple steatosis to nonalcoholic steatohepatitis in 
patients with NAFLD47, had the first and 16th highest correlation 
coefficients, respectively, to hepatic steatosis. The top four proteins 
correlated with each histological score are shown in Fig. 2e.

In total, 225 proteins were significantly differentially abun-
dant across histologic stages of fibrosis (206 proteins), inflamma-
tory activity (163 proteins) and steatosis (48 proteins), underlying 
remodeling of the plasma proteome as a function of liver pathol-
ogy (Extended Data Fig. 4a and Supplementary Table 7). Among 
these, 134 proteins were up- and 91 downregulated as fibrosis  
stage increased (Extended Data Fig. 4b). Of those dysregulated 
proteins annotated as liver specific or secreted, 83 and 64%, respec-
tively, were found to be downregulated (Extended Data Fig. 4c).  

The downregulated cluster includes proteins involved in the  
complement system (complement 4A, 6, 8B, 8G and 9), coagula-
tion cascade (coagulation factors F2, F5, F7, F9, F10, F11, F13A1, 
PROC, PROS1, PROZ and SERPINC1), apolipoproteins (APOA1, 
APOA2, APOB, APOC1, APOC3, APOC4, APOF, APOH, 
APOL1 and APOM) and carrier proteins (ALB, TTR, GC, RBP4 
and HPX) (Supplementary Table 7). To demonstrate the impor-
tance of sufficient statistical power in human proteomics studies, 
we performed analysis of covariance (ANCOVA) on the subset of 
79 plasma samples whose paired liver proteomes were also mea-
sured. This resulted in only 45 significantly differentially abundant 
proteins (Supplementary Table 8), 84% of which were among the 
top 100 most dysregulated proteins (F4/F0) when using the com-
plete dataset (n = 358), indicating that proteins with a larger effect 
size are more robust to reduced sample size (Extended Data Fig. 4d).

Circulating levels of 106 proteins significantly correlated to 
fibrosis stages, 55 to inflammatory activity and five to steato-
sis (Supplementary Tables 9–11). Complement component C7 
(Spearman r = 0.73), QSOX1 (r = 0.6) and LGALS3BP (r = 0.58) 
showed the highest correlation to fibrosis stages (also, the top three 
correlated to inflammation) (Extended Data Fig, 4e,f), represent-
ing promising fibrosis and inflammation marker candidates due 
to their roles in ECM remodeling, immune response and disease 
stage-dependent increase in the circulation. Fructose biphosphate 
aldolase B (ALDOB), a key enzyme in aldolase metabolism and a 
potential biomarker for NAFLD21, had the second highest correla-
tion to steatosis (r = 0.41) (Extended Data Fig. 4f).

Integration of liver and plasma proteomics. In total, 420 proteins 
were commonly quantified in the liver and plasma (Fig. 3a). Their 
levels in a 2-dimensional space exhibited a bimodal pattern. For 
one group of proteins, relative abundance rank in liver and plasma 
were largely correlated (‘diagonal cluster’) whereas for the other 
group there was no correlation (‘vertical cluster’, where each dot 
represents a protein; Fig. 3b). For example, liver enzymes ALDOB 
and DPP4 exhibited about 1,000-fold difference in abundance in 
the liver whereas their levels in plasma were low and very similar 
(Fig. 3c). In general, intracellular enzymes were part of the verti-
cal cluster, including ALDOB, CES1, ALDH1A1 and LDHA, which 
were detected in the plasma at very low levels—10,000-fold less 
than albumin—presumably reflecting tissue leakage. The diagonal 
cluster represents plasma proteins serving many different functions, 
including highly abundant proteins such as albumin, apolipopro-
teins A1, A2 and C3, hepatoglobin, SERPINA1 and fibrinogen sub-
units, as well as less abundant examples such as coagulation factors 
F2, F9, F10, F11, F12 and F13A1 (Fig. 4c). Among these commonly 
detected proteins, 112 had significant correlations between paired 
liver and plasma samples (Pearson’s r up to 0.85 for C7 and IgA1; 
Fig. 3d,e and Supplementary Table 12). C-reactive protein (CRP) 
levels in liver tissue and circulation also correlated highly (r = 0.73), 
which is of interest given the widespread use of this protein as a 
systemic risk marker for cardiovascular disease (Fig. 3f).

In total, 46 proteins were commonly differentially abundant 
in ANCOVA of the liver and plasma proteome (for simplicity, we 
hereinafter refer them as codysregulated proteins) (Fig. 3g and 
Supplementary Table 13). These represent immune and inflamma-
tory responses, cell adhesion, ECM organization, protease inhibitors 
and intracellular enzymes (Fig. 3g). They are codysregulated prob-
ably due to immune cell infiltration and increased overall systemic 
inflammation, ECM remodeling and scar tissue formation in liver 
fibrosis, and tissue leakage. Most codysregulated proteins increased 
in abundance from fibrosis stage F0 to F4 in both liver and plasma, 
including PIGR, LGALS3BP, TGFBI and C7, all promising markers 
in liver disease that have previously been reported21. A few excep-
tions, such as tetranectin (CLEC3B), vitronectin (VTN), F13A1 
and APCS, exhibited the opposite patterns in liver and plasma as 
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fibrosis increased. Apart from these monotonic patterns, ALDOB 
increased from F0 to F2 followed by a decrease in advanced fibrosis 
in the plasma, but continuously decreased from F0 to F4 in the liver, 
consistent with our previous observation in NAFLD and cirrhosis21. 
Decrease of hepatic ALDOB may be the result of reduced functional 
hepatocyte cell mass, while plasma levels seem to be a combined 

effect of tissue leakage (similar to liver damage markers ALT and 
AST) and impaired liver synthesis.

Biomarker panels for early-stage pathology of ALD. We first  
compared 22 state-of-the-art machine learning classifiers and  
determined a logistic regression model as the final classifier for 
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its overall superior performance, simplicity and interpretability 
(Methods and Extended Data Fig. 5). Using the ‘minimum redun-
dancy–maximum relevance’ (mRMR)48 feature selection algo-
rithm, we selected a nine-protein marker panel for identification 
of significant fibrosis (≥F2: 200 controls, 160 cases), six for mild 
inflammatory activity (≥I2: 153 controls, 189 cases) and 12 for any 
liver steatosis (≥S1: 156 controls, 196 cases). These proteins either 
increased or decreased following disease progression (Extended 
Data Fig. 6). Among the 22 unique proteins comprising the three 
marker panels, eight were codysregulated in both plasma and  
liver including C7, LGALS3BP, TGFBI, ALDOB, CLEC3B, FBLN1, 
ATRN and SERPINF1 (Supplementary Table 14). The proportion 
of codysregulated proteins was highest for the inflammation panel, 

reaching 67% (33 and 42% for the fibrosis and steatosis panels, 
respectively). The mRMR algorithm also detected ALDOB, AFM 
and LGALS3BP, three of the six proteins we previously identified 
as candidate markers for NAFLD21. Logistic regression models 
based on the selected marker panels had a mean cross-validated 
ROC–AUC of 0.90 (95% confidence interval (CI) 0.899–0.905), 
0.85 (95% CI 0.851–0.858) and 0.91 (95% CI 0.907–0.915) for  
prediction of significant fibrosis, mild inflammatory activity and 
any steatosis, respectively (Fig. 4a,d,g and Supplementary Table 15).  
When compared with the 15 state-of-the-art clinical tests using 
widely agreed, established cutoffs or logistic regression-determined 
cutoffs (Supplementary Table 16), all proteomics models had  
the highest F1 scores and balanced accuracies (Fig. 4b,c,e,f,h,i).  
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A final prediction model based on a new random split resulted  
in ROC–AUC values of 0.92, 0.87 and 0.85 for identification  
of the three above-mentioned endpoints (hereinafter referred  
as the F2, I2 and S1 proteomics models, respectively) (Supple
mentary Table 17). The F2 proteomics model significantly out-
performed logistic regression models using either the Forns index, 
APRI or the FIB-4 Index (DeLong’s test, P < 0.05) and was equally 
good as the others, including the best-in-class reference, tran-
sient elastography (Supplementary Table 18). The I2 proteomics 

model significantly outperformed logistic regression models using 
ALT, AAR and the commercial marker M30/M65 ratio, and the 
S1 proteomics model was equally as good as CAP. Although we 
focused on early-stage fibrosis, we also built a model for identifi-
cation of advanced fibrosis (≥F3). It had an ROC–AUC of 0.974 
(Supplementary Table 17), which significantly outperformed five 
clinical tests (Supplementary Table 18). These final proteomics 
models were used for subsequent validation and assessment of their 
prognostic capability.
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Validation of model performance in an independent cohort. The 
proteomics models correctly excluded significant fibrosis, advanced 
fibrosis and mild inflammation in the cohort of healthy, matched 
controls (n = 136), with an accuracy of 99, 100 and 98%, respec-
tively (Fig. 5a and Supplementary Table 19). Although around 15% 
of healthy individuals were classified as steatosis positive, since they 
were matched for body mass index (BMI) with the GALA–ALD 
cohort and simple steatosis was not an exclusion criterion, clini-
cal misassignment is possible. Supporting these steatosis-positive 
assignments by the S1 proteomics model, 65% had a CAP value 
>290, the threshold for ruling in fatty liver. The high consen-
sus between the S1 proteomics model and CAP, an independent 
method for detection of liver steatosis, implies a potentially even 
higher accuracy of the S1 proteomics model in excluding steatosis. 
Clinically, it is relevant to exclude liver damage in at-risk popula-
tions such as alcohol misuse. For the subset of patients with a his-
tory of alcohol misuse and who were not biopsied due to low liver 
stiffness (n = 97), the proteomics models correctly excluded signif-
icant and advanced fibrosis in 93 and 100% of cases, respectively 
(Fig. 5a and Supplementary Table 19). However, liver stiffness based 
on transient elastography is only moderately accurate for exclusion 
of significant fibrosis12. This probably explains some of the remain-
ing false positives in our model.

In the independent ALD validation cohort (n = 63), the F2 and 
I2 proteomics models yielded higher ROC–AUC values than any  
of the ten in-class comparators available in the cohort, with an  
ROC–AUC of 0.87 and 0.81, respectively (Fig. 5b,c and Supple
mentary Tables 20 and 21). For steatosis only, CAP outperformed 
our S1 model with an ROC–AUC of 0.88 compared against 0.79.

To further assess proteomics model performance we calculated 
net reclassification improvement (NRI)49, a metric widely used to 
quantify how well a new model reclassifies subjects compared with 
a baseline model, using the test set in both the discovery and valida-
tion cohorts (Methods). This resulted in net advantages of the F2, 
I2 and S1 proteomics models compared with all their comparators 
at their clinically recommended cutoffs (NRI > 0; Supplementary 
Table 22). Specifically, the F2 proteomics model performed better in 
ruling out disease than TE and the ELF blood test but was less accu-
rate at ruling in disease, resulting in a net advantage of this model. 
Similarly, SWE and the APRI index ruled out significant fibrosis 
slightly better than the F2 model but were weaker at ruling in sig-
nificant fibrosis. Our F2 proteomics model performed better at both 
ruling in and ruling out disease than the FIB-4 index. Likewise, our 
I2 proteomics panel was substantially better than the AST/ALT ratio 
in ruling in hepatic inflammatory activity but not for ruling out, still 
resulting in an overall higher performance than AAR. The S1 pro-
teomics panel was slightly better than CAP in ruling in any steatosis, 
while the two techniques were comparable for ruling out steatosis 
(Supplementary Table 22).

Proteomics models are accurate prognostic measures. Using 
nationwide Danish electronic health records, we extracted longitu
dinal, clinical outcome data by following 457 patients in the  
GALA–ALD cohort from the day of inclusion until death or end 
of the follow-up period (30 October 2020). We defined two pri-
mary outcomes: liver-related events (LREs, a composite endpoint 
comprising 11 types of outcome (Supplementary Table 23)) and 
all-cause mortality. During a median follow-up period of 53 months 
(IQR 34–74) and 2,035 person-years, 76 patients died and 85 expe-
rienced one or more LREs, the latter dominated by decompensation 
(89%, 106 events) caused by portal hypertension, with ascites being 
the commonest single manifestation (Extended Data Fig. 7). There 
were four cases of severe alcoholic hepatitis without concomitant 
evidence of decompensation related to portal hypertension (5% of 
all LREs), and five cases of hepatocellular carcinoma (HCC) without 
concomitant evidence of portal hypertension (6% of all LREs).

We compared our proteomics models against competing 
commercial biomarkers and histologic staging of liver fibrosis 
(Methods). The F2 proteomics model showed the highest discrimi-
native accuracy for prognostication of LREs, with Harrell’s C = 0.900 
and AUC = 0.945 (3-year) and AUC = 0.933 (5-year), significantly 
higher than the F3 and I2 proteomics models, with transient elas-
tography the second highest (Fig. 5d–f and Supplementary Tables 
24 and 25). For all-cause mortality, the F2 proteomics model also 
performed best (Harrell’s C = 0.789, 3- and 5-year AUC = 0.836 and 
0.818, respectively) (Fig. 5g–i and Supplementary Table 24), but did 
not statistically outperform TE, ELF or the F3 proteomics model 
(Supplementary Table 26).

Discussion
Here we set out to investigate liver and plasma proteome changes 
associated with liver pathophysiology, and to identify circulating 
proteins of diagnostic value in detection of liver fibrosis, inflamma-
tory activity and steatosis. Specifically, we asked whether we could 
detect liver disease by a state-of-the-art, MS-based proteomics work-
flow. Indeed, the biomarker panels used for detection of the three 
key pathological features of liver disease identified in this study have 
considerably better, or at least comparable, performance compared 
with a comprehensive collection of existing best-in-class clinical 
tests as judged by F1 score, balanced accuracy and DeLong’s test 
on ROC–AUC. A validation cohort further reproduced the model 
performance of marker panels for detection of significant fibrosis 
and mild inflammation as determined by ROC–AUC. The NRI 
index further identified the specific clinical advantages of the pro-
teomics models in comparison with existing tests. For instance, the 
F2 proteomics model is better at ruling out significant fibrosis than 
TE or the ELF blood test. Confident ruling out of disease reduces 
false positives, which is especially valuable in general practice where 
over-referral is a prominent issue. Our results indicate the feasibility 
of plasma proteomics for the simultaneous and accurate detection 
of fibrosis, inflammation and steatosis in ALD to inform clinical 
decision making. The combined diagnostic and prognostic infor-
mation based on a single blood sample may reduce patient–hospi-
tal interactions and allow faster treatment decisions. In this study, 
we applied a default cutoff value of 0.5 for disease classification on 
patients in the validation cohort. To develop the biomarker panels 
into a diagnostic test in the clinic, the cutoff value can be optimized 
to balance sensitivity and specificity.

Thus, advances in MS-based, high-throughput proteomics hold 
potential for clinical translation. Inherently, this technology has the 
advantage of proteome-wide protein quantification making the size 
of the marker panels unimportant. It already shows competitive 
performance in detection of significant fibrosis (including F2) com-
pared with elastography imaging modalities. To increase through-
put and reduce costs, targeted proteomics assays could be developed 
that measure a subset of proteins in a shorter analysis time, similar 
to the ubiquitous and low-cost LC–MS/MS-based vitamin D tests. 
Another example of FDA-approved, MS-based in vitro diagnostic 
device is the Biotyper instrument for microbial identification, show-
ing that MS can be deployed on a very large scale. In future, custom-
ized mass spectrometers that are easy to maintain and operate may 
be developed to serve as clinical diagnostic tools. The magnitude of 
some of the changes detected in this study is very small (for exam-
ple, increases of 9% for CFH and 24% for QSOX1, and up to 82% for 
LGALS3BP at stage F2 compared with F0, calculated as F2/F1 – 1). 
For such small changes, analytical reproducibility and quantifica-
tion accuracy are probably best achieved by MS-based proteomics, 
which is also much more specific than affinity-based methods. 
However, for purposes of commercialization and easy access, we do 
not exclude the possibility of developing immunoassay-based meth-
ods for protein marker panels or targeted combinations of immuno-
capture with specific and rapid MS readout.
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Integration of liver and plasma proteomics resulted mainly in 
the identification of upregulated proteins. This observation might 
be due to both a larger proportion of upregulated proteins observed 
in the liver proteome and a higher magnitude of dysregulation in 

upregulated than downregulated proteins. Biologically our findings 
reflect the immune response and imbalanced ECM turnover, which 
result in dramatic liver proteome remodeling. In contrast, impaired 
liver synthetic function leads to less pronounced fold changes.
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The marker panels underlying these models were selected in  
an unbiased manner, driven by their diagnostic performance. While 
some have been implicated in liver disease confirming previously 
published findings, such as C7 (ref. 50), LGALS3BP51, TGFBI52, 
ALDOB21, AFM21,53, TTR54, QSOX1 (ref. 52), F2 (ref. 52), APOF55, 
LBP56 and SERPINC1 (ref. 57), several have the potential to serve 
as new circulating biomarkers, including ASAP1, CLEC3B, CFH, 
ITIH4, ATRN, PEPD and SERPINF1. The high prognostic perfor-
mance of the F2 and I2 proteomics models suggests that the under-
lying proteins may be related to observed LREs. Panel proteins of 
these two models have molecular functions linked to the immune 
system (C7, CFH, FCN2, ORM1), ECM organization, cell–cell 
adhesion and migration (TGFBI, LGALS3BP, QSOX1), coagula-
tion cascade (F2, SERPINC1, PROC), transport in the bloodstream 
(TTR, ORM1 and APOF), metabolism (ALDOB) and HCC (prog-
nostic markers CLEC3B, ASAP1). Our data suggest that pathophys-
iological characteristics traditionally associated with compensated 
and decompensated cirrhosis could occur at earlier stages of ALD 
and drive disease progression—for example, immune dysfunction 
(characterized by both increased systemic inflammation and immu-
nodeficiency), coagulation disequilibrium (resulting in micro-
thrombi in the liver sinusoids), protein calorie malnutrition and 
dysbalanced ECM turnover, where collagen formation supersedes 
collagen degradation58. The lower prognostic performance of the S1 
proteomics model is consistent with observational studies showing 
that biopsy-confirmed liver fibrosis is the main prognostic predic-
tor of LREs and overall mortality23,59,60 while simple steatosis carries 
little prognostic information.

The strengths of this study include a large, deeply phenotyped 
cohort with liver biopsy as reference standard for diagnostic markers 
and complete, multi-year outcome events derived from nationwide 
electronic health records. Both the derivation and validation ALD 
cohorts consisted of consecutively recruited patients, represent-
ing the full spectrum of patients with asymptomatic chronic ALD 
before the onset of decompensation. We thereby avoid the spectrum 
and selection bias seen in many biomarker discovery studies61. The 
controls we used for evaluation of the specificity of model perfor-
mance were not taking any medication, had no chronic disease 
and had not received antibiotics for infections within the previous 
6 months at least. In this healthy cohort our proteomics panels accu-
rately predicted the absence of liver disease, an encouraging result 
for potential screening purposes. The F2 and I2 proteomics panels 
also accurately ruled out disease in the subgroup of patients with 
ALD and low liver stiffness. Our proteomics models confidently 
ruled out fibrosis and inflammation in the at-risk but liver-healthy 
subset, and also correctly diagnosed participants in the independent 
validation cohort.

Among the limitations to this study, first there is currently no 
universally accepted system for scoring the entire clinical spec-
trum of ALD. The international consensus to date has been to apply 
NAFLD grading and staging systems to ALD because of shared 
histological presentations12,23. We chose NAS because it is the most 
commonly used scoring system for NAFLD and ALD. However, 
some prognostic features of ALD, such as cholestasis and Mallory–
Denk bodies, are not considered in NAFLD grading62. These fea-
tures are more common in hospitalized patients with alcoholic 
hepatitis, where inflammation and hepatocyte cell death are more 
severe than those observed in our cohort62. Post hoc we evaluated 
a subgroup of 106 participants for cholestasis, and found that none 
had ductular cholestasis and only 9% showed evidence of mild 
canalicular cholestasis. We cannot exclude that specific proteomics 
markers of cholestasis may have been omitted but, given the scar-
city of these specific histological features, it is unlikely to change 
the overall conclusions of our study. Second, we cannot exclude the 
possibility of some blood contamination when performing pairwise 
correlations between liver and plasma, because liver perfusion is 

applicable only in mouse models. If this occurred, the true corre-
lation between plasma and tissue proteome changes could be less 
than that observed. Accordingly, some of the dysregulated proteins 
in plasma may not be liver specific but could have stemmed from 
other affected organs, such as the gut or adipose tissue, but this 
would not have affected their diagnostic value. Third, we have not 
yet demonstrated the cost effectiveness of our approach, because 
it is not intended to be a final product ready for implemention in 
clinical practice.

Our results also have implications for the development of poten-
tial ALD treatment options. For example, 20% of upregulated tissue 
proteins were associated with signal transduction pathways such as 
the receptor tyrosine kinase, and some less-studied, but also drugga-
ble, signaling pathways in ALD, including G-protein-coupled recep-
tors. Furthermore, codysregulated proteins in the liver and plasma 
represent diverse aspects of chronic liver disease such as immune 
and inflammatory responses, cell adhesion, ECM organization 
and protease inhibition. Some of these molecules may likewise be 
targets for pharmaceutical development. Even more detailed func-
tional comparisons of plasma and tissue changes could be enabled 
by in-depth liver atlases63. In summary, this study confirms previous 
findings and provides potential protein targets that are of diagnostic, 
prognostic and therapeutic value in ALD. The marker panels could 
be applicable to other liver disease etiologies such as NAFLD, with 
which they share common histological presentations. However, this 
generalization would require studies in cohorts of comparable size, 
disease spectrum and clinical characterization.
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Methods
Ethical approval. The study protocol was approved by the ethics committee for the 
Region of Southern Denmark (nos. S-20160006G, S-20120071, S-20160021 and 
S-20170087) and is registered with both the Danish Data Protection Agency (nos. 
13/8204, 16/3492 and 18/22692) and Odense Patient Data Exploratory Network 
(under study identification nos. OP_040 and OP_239 (open.rsyd.dk/OpenProjects/
da/openProjectList.jsp)). The study protocol (still ongoing) for the ALD validation 
cohort was registered at clinicaltrials.gov (ID: NCT03308916). The study was 
conducted according to the principles of the Declaration of Helsinki, and oral and 
written informed consent was obtained from all participants.

Participant recruitment and clinical data collection. For the GALA–ALD cohort 
(n = 459) we recruited patients consecutively through standard referrals to three 
outpatient liver clinics, from two municipal alcohol rehabilitation centers and 
through a community call to screen for ALD in the Region of Southern Denmark. 
Inclusion criteria in the GALA–ALD cohort were a history of misuse of alcohol 
for >1 year (>24 g d–1 for women and >36 g d–1 for men), age 18–75 years and 
informed consent to undergo a liver biopsy. We excluded patients with evidence 
of decompensated cirrhosis (obvious ascites, known esophageal varices, previous 
decompensation), concurrent liver disease other than alcohol related, severe 
alcoholic hepatitis, debilitating disease with an expected survival of <1 year, hepatic 
congestion or cholestasis evidenced by ultrasound, or inability to comply with the 
study protocol (Supplementary Table 27).

We performed percutaneous liver biopsy with a 17G Menghini suction needle 
(Hepafix, Braun) on patients in the GALA–ALD cohort, except for a subset 
(n = 97) because we revised the protocol in 2016 to remove biopsy in those whose 
liver stiffness measurements with transient elastography indicated no or minimal 
fibrosis (FibroScan <6.0 kPa). We staged liver fibrosis according to the Kleiner 
score25: F0, no fibrosis; F1, portal or periportal fibrosis only; F2, perisinusoidal 
fibrosis in combination with portal or periportal fibrosis; F3, bridging fibrosis; and 
F4, cirrhosis. We also assessed liver histology according to NAS–CRN25, which 
is widely adopted and the gold standard scoring system for ALD. The resultant 
histologic staging and scoring serve as the basis for disease-stage-dependent 
bioinformatics analysis and machine learning-based modeling: fibrosis on a scale 
of 0–4 (F0–4), inflammatory activity score on a scale of 0–5 (I0–5, summed lobular 
inflammation and hepatocyte ballooning) and steatosis on a scale of 0–3 (S0–3). 
Among those who had undergone liver biopsy (n = 361), 56% had significant 
fibrosis (≥F2) and 26% had advanced fibrosis (≥F3), creating a cohort that well 
represented the early stages of the disease where new diagnostic tools are needed.

We chose the NAFLD activity score because it is the most commonly used 
scoring system for NAFLD and ALD, and there is currently no universally accepted 
scoring system for the entire histological spectrum of ALD. Very recently, the 
study of alcohol-related liver disease in Europe (SALVE consortium) published a 
proposal for a histological scoring system specifically developed for ALD62. The 
major difference between SALVE and the NAS score is the addition of scoring for 
canalicular and ductular cholestasis, while lobular inflammation and ballooning 
are included in both scoring systems for inflammatory activity. We checked the 
subset of 106 biopsies in the GALA–ALD cohort, which were evaluated for the new 
SALVE features, canalicular and ductular cholestasis. Canalicular cholestasis was 
described in ten patients (9%) while ductular cholestasis was not found in any of 
the biopsies.

For the GALA–HP cohort (n = 137) we recruited healthy controls partly 
matched for age (40–75 years), gender and BMI, through online advertisements 
and social media in the Region of Southern Denmark. We excluded healthy 
controls in case of any medication or any chronic disease among other exclusion 
criteria (Supplementary Table 27).

The ALD validation cohort (n = 63) consisted of independent participants in a 
population screening study, initiated after the conclusion of the GALA–ALD study. 
Inclusion criteria for this study were a history of misuse of alcohol for >5 years 
(≥24 g d–1 for women and ≥36 g d–1 for men) and age 30–75 years. We excluded 
patients with evidence of decompensated liver disease with clear signs of cirrhosis: 
obvious ascites, overt hepatic encephalopathy and large esophageal varices with/
without variceal bleeding, among other exclusion criteria (Supplementary Table 
27). A slightly higher proportion of patients in this cohort had significant fibrosis 
(≥F2, 70% as compared with 56% in the discovery cohort), but these contributed 
mainly to mild stages (F2 and F3) and a lower proportion of cirrhosis (F4). In 
contrast, there were slightly fewer patients with mild hepatic inflammation (≥I2) 
(47% as compared with 54% in the discovery cohort and a median inflammatory 
activity score of 1 compared with 2).

Patient characteristics. Characteristics of patients with GALA–ALD (n = 459): 
median age 57 years (IQR 13), 76% male, BMI 27.4 kg m–2 (IQR 6.7), model 
for end-stage liver disease (MELD) score 6 (IQR 2, range 6–18), liver stiffness 
measured by FibroScan 6.5 kPa (IQR 6.8, range 1.5–75) and liver fibrosis stage from 
biopsies: F0/1/2/3/4, 36/124/106/27/67. Not all biopsies contained sufficient tissue 
for adequate assessment of steatosis, ballooning and lobular inflammation, and 
therefore the following includes 352 patients only: liver steatosis score from biopsy: 
S0/1/2/3, 156/85/72/39; liver ballooning score from biopsy: 0/1/2, 178/108/66; liver 
lobular inflammation score from biopsy: 0/1/2/3, 80/160/84/28. In total, 94 patients 

had severe fibrosis or cirrhosis (F3, n = 27, 8%; F4, n = 67, 19%). Of these, median 
MELD score was 8 (IQR 7–10), median Child–Pugh score was 5 (IQR 5–6) 
and, when classified into A/B/C, the corresponding proportions were 72/20/2 
and 77/21/2%. The two patients with Child–Pugh C both had elevated bilirubin, 
low albumin and mild ascites as evidenced by ultrasound. We did not perform a 
biopsy but included these patients in the project because they did not have known 
liver disease before inclusion.

Characteristics of GALA–HP participants (n = 137): median age 53 years 
(IQR 13), 63% male, BMI 26.1 kg m–2 (IQR 4.7), no medication, no chronic diseases, 
no recent antibiotics (at least 6 months), MELD score 6 (IQR 1, range 6–10), liver 
stiffness measured by FibroScan 4.3 kPa (IQR 1.7, range 2.6–9.7) kPa. We did not 
conduct a liver biopsy in the healthy control cohort, for ethical reasons.

Characteristics of ALD validation cohort patients (n = 63): median age 
58 years (IQR 14), 86% male, BMI 30.2 kg m–2 (IQR 8.1), MELD score 7 (IQR 2, 
range 2–13); liver stiffness measured by FibroScan 9.2 kPa (IQR 5.4, range 5–58); 
liver fibrosis stage from biopsy: F0/1/2/3/4, 4/15/21/13/9; liver ballooning score: 
0/1/2, 37/16/6; liver lobular inflammation score: 0/1/2/3, 10/30/18/1; liver steatosis 
score: S0/1/2/3, 19/20/12/8. In total, 22 patients had severe fibrosis or cirrhosis (F3, 
n = 13, 21%; F4, n = 9, 15%); of these, median MELD score was 7 (IQR 6–8) and the 
Child–Pugh score was 5 (classified as A) in all patients (except for three, in which 
Child–Pugh score calculation was not available).

Plasma proteome sample preparation. Plasma samples were prepared using a 
modified protocol based on a previously published plasma proteome-profiling 
pipeline on an automated liquid handling system (Agilent Bravo) in a 96-well plate 
format22. Specifically, 45 µl of lysis buffer (10 mM tris(2-carboxyethyl)phosphine, 
40 mM chloroacetamide, 100 mM Tris, pH 8.5) was added to 5 µl of blood plasma 
sample to achieve a tenfold dilution (plasma plate). The diluted solution was 
thoroughly mixed by pipetting 50 times up and down, for a volume of 40 µl. The 
plate was then centrifuged up to 300g, and 5 µl of the tenfold-diluted plasma 
was pipetted into a new 96-well plate filled with 15 µl of lysis buffer in each well 
(digestion plate). The digestion plate was heated to 95 °C for 10 min, followed 
by cooling to room temperature for 5 min. The denatured protein mixture was 
digested at 37 °C for 2 h after the addition of 20 µl of a freshly prepared 0.05 µg µl–1 
trypsin/LysC mixture into each well, to a final volume of 40 µl (1 µg of enzyme 
to 40 µg protein, with an estimated 80 µg µl–1 protein concentration in plasma). 
Enzymatic digestion was quenched by the addition of 64 µl of 0.2% trifluoroacetic 
acid (TFA) then thoroughly mixed by pipetting 20 times up and down. A total of 
500 ng of digestion mixture was loaded onto a disposable Evotip C18 trap column 
(Evosep Biosystems) according to the manufacturer’s instructions. Briefly, Evotips 
were wetted with 2-propanol, activated with 0.1% formic acid in acetonitrile, 
equilibrated with 0.1% formic acid and then loaded using centrifugal force at 
1,000g for 2 min. Evotips were then washed with 0.1% formic acid followed by the 
addition of 200 µl of 0.1% formic acid to prevent drying.

Liver proteome sample preparation. Snap-frozen liver biopsies were 
cryopulverized in a Covaris cryoPREP Dry Pulverizer and collected in a glass tube. 
Approximately 1 mg (in some cases <1 mg) of tissue powder was transferred to an 
Eppendorf tube, with the addition of 150 μl of SDC reduction and alkylation buffer 
(PreOmics). The homogenate was then heated at 95 °C for 10 min, vortexed at 
1,200 r.p.m. on a thermo mixer (Eppendorf) to denature proteins and subsequently 
sonicated using a water bath sonicator (Diagenode Bioruptor) at full power for 
30 cycles at 30-s intervals, followed by a second round of sonication using the 
Covaris Adaptive Focused Acoustics sonication system (Covaris). Protein content 
was determined by tryptophan assay, and a volume containing 50 μg of protein was 
digested overnight with trypsin and LysC (1 µg of enzyme to 50 µg of protein) at 
37 °C, 1,200 r.p.m. on a thermo mixer. The digestion mixture was acidified to a final 
concentration of 0.1% TFA to quench the digestion reaction. Peptide concentration 
was estimated using Nanodrop, and 20 μg of peptide mixture was purified by 
solid phase extraction in a Stage-Tip format (SDB–RPS material, two 14G plugs), 
washed with isopropanol/1% TFA and 0.2% TFA (200 μl each, centrifuged at 
1,500g with a three-dimensionally printed centrifugal block). Peptides were eluted 
with 60 μl of 80% acetonitrile/1% ammonia and dried at 60 °C using a SpeedVac 
centrifuge (Eppendorf, Concentrator plus). Dried peptides were dissolved and 
sonicated in 5% acetonitrile/0.1% TFA. Peptide concentration was measured using 
Nanodrop, and 500 ng of purified peptides was injected for LC–MS/MS analysis.

LC–MS/MS analysis. The acquisition of samples was randomized to avoid 
bias. In single-shot plasma proteome analysis, the peptide mixture was partially 
eluted from Evotips with <35% acetonitrile and analyzed with an Evosep One 
LC system (Evosep Biosystems27) coupled online to an Orbitrap Exploris 480 
mass spectrometer (Thermo Fisher Scientific). Eluted peptides were separated 
on a 8-cm-long PepSep column (150 µm inner diameter packed with 1.5 μm 
of Reprosil-Pur C18 beads (Dr Maisch)) in a standard preset gradient method 
(21 min, 60 samples per day) and electrosprayed with a stainless emitter (30 µm 
inner diameter) at 2.2 kV. Data were acquired in DIA mode (Supplementary  
Table 28). Each acquisition cycle consisted of a survey scan at a resolution of 60,000 
(normalized automatic gain control target (AGC) of 300% and 100 ms injection 
time (IT), tune v.3.1.279.9), and 33 DIA cycles with dynamic isolation windows at 
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a resolution of 30,000 at 200 m/z (with AGC target set to ‘standard’ and maximum 
injection time mode set to ‘auto’). Higher-energy collisional dissociation (HCD) 
fragmentation was set to a normalized collision energy of 30%. In all scans, 
PhiSDM29 was enabled with 100 iterations and spectral type was set to centroid.

In single-shot liver proteome analysis, purified peptides were measured using 
LC–MS instrumentation consisting of an EASY-nLC 1200 system (Thermo Fisher 
Scientific) interfaced online with a Q Exactive HF-X Orbitrap (Thermo Fisher 
Scientific). Peptides were separated on 42.5-cm high-performance LC columns 
(75 µm inner diameter packed with 1.9 µm of ReproSil-Pur C18-AQ beads 
(Dr Maisch)). For each LC–MS/MS analysis, around 0.5 µg of peptides was injected 
for 100-min gradients. Peptides were loaded in buffer A (0.1% formic acid) and 
eluted with a linear 82-min gradient of 3–23% of buffer B (0.1% formic acid and 
80% (v/v) acetonitrile), followed by an 8-min increase to 40% of buffer B. Gradients 
were then increased to 98% of buffer B within 6 min, which was maintained for 
4 min. Flow rates were kept at 350 nl min–1. Re-equilibration was performed for 4 μl 
of 0.1% buffer A at a pressure of 980 bar. Column temperature was maintained at 
60 °C using an integrated column oven (PRSO-V2, Sonation). Data were acquired 
using an optimized DIA method enabled by MaxQuant.Live (v.1.0)28 in which 
the scan protocol was defined. Each acquisition cycle consisted of a survey scan 
at a resolution of 60,000 with an AGC of 3 × 106 and IT of 100 ms, followed by 
66 DIA cycles (Supplementary Table 28) at a resolution of 15,000 with an AGC of 
3 × 106 and IT of 22 ms in the range 300–1.650 m/z. HCD fragmentation was set 
to normalized collision energy of 27%. In all scans, PhiSDM29 was enabled with 
100 iterations and spectral type was set to ‘centroid’.

MS data analysis. Data-independent acquisition spectra in the liver biopsy dataset 
were analyzed with Spectronaut v.13, and the plasma dataset was analyzed with 
Spectronaut v.15.4 (ref. 64). Default settings were used unless otherwise noted. 
Data filtering was set to ‘Qvalue’. ‘Cross run normalization’ was enabled with the 
strategy of ‘local normalization’ based on rows with ‘Qvalue complete’. FDR was 
set to 1% at both the protein and peptide precursor levels. A previously generated 
deep fractionated plasma data-dependent acquisition (DDA) library and liver DDA 
library were used in the targeted analysis of DIA data for plasma and liver datasets 
against the human reference proteome database (2018 release, 21,007 canonical and 
72,792 additional sequences).

Preprocessing of liver and plasma proteomics datasets. Proteome datasets of 
liver and plasma were filtered for 60% valid values across all samples (proteins 
with >40% missing values were excluded from downstream statistical analysis), 
with the remaining missing values imputed by drawing random samples from a 
normal distribution with downshifted mean by 1.8 s.d. and scaled s.d. (0.3) relative 
to that of abundance distribution of all proteins in one sample. Specifically, in 
total 536 proteins were quantified in the plasma proteomes and filtering for 60% 
valid values across all samples resulted in a dataset of 311 proteins with a data 
completeness of 96%. Assessed on 13 quality control samples, median workflow 
coefficient of variation was 19% across a 2-week measurement period (Extended 
Data Fig. 2). Protein intensities were then log2 transformed for downstream 
statistical and bioinformatics analysis. The liver proteome was preprocessed in the 
same way, and further details are provided above (Extended Data Fig. 2).

Differential abundance analysis. Differentially abundant proteins were 
determined by ANCOVA controlling for the common covariates age, BMI, sex 
and abstinence status at inclusion. We also controlled for the effects of steatosis 
when assessing the effect of fibrosis and inflammation on the liver and plasma 
proteomes, and vice versa. Histological stages include a five-grade fibrosis score 
(F0–4, denoted as Kleiner), a six-grade inflammation score (NAS inflammation, 
I0–5) combining lobular inflammation and ballooning, and a four-grade steatosis 
score (NAS steatosis, S0–3). A python script (v.3.7) based on the open-source 
statistical package pingouin.ancova (pingouin v.0.4.0) was developed to handle 
ANCOVA in proteomics data and to control for multiple hypothesis testing. 
A protein was considered significantly differentially abundant across a given 
condition if the ANCOVA-derived, FDR-adjusted P value by Benjamini–Hochberg 
was <0.05. Numbers of samples in this analysis can be found in Supplementary 
Table 29, and significant proteins and ANCOVA statistics are provided in 
Supplementary Tables 1 and 7. Differential abundance across disease stage is 
presented as a heatmap generated by Perseus computational software (v.1.6.5.0)65.

Proteome correlation to histology scores. Spearman partial correlation, 
controlling for the same covariates as ANCOVA, was performed to assess 
protein–histology score correlation. Correlation was considered significant if the 
FDR-adjusted P value by Benjamini–Hochberg was <0.05 and the absolute value of 
correlation coefficient r ≥ 0.3. A python script based on the open-source statistical 
package pingouin.partial_corr was developed to handle partial correlation in 
proteomics data and to control for multiple hypothesis testing. The number of 
samples in this analysis can be found in Supplementary Table 29 while significant 
proteins, corresponding P values and Spearman correlation coefficients are 
provided in Supplementary Tables 4–6 and 9–11. Protein abundance in regard 
to dependence on disease stage is presented as bar plots generated in the Jupyter 
Notebook environment.

Pairwise liver–plasma proteome correlation. Pairwise correlation was performed 
to assess the correlation between paired liver biopsy and plasma across the  
patient cohort. Significance level was controlled at an FDR-adjusted P value by 
Benjamini–Hochberg of <0.05 and an absolute value of correlation coefficient 
r > 0.3. A python script based on the open-source statistical package pingouin.
pairwise_corr was developed to handle pairwise correlation in proteomics data and 
to control for multiple hypothesis testing. Significant proteins and corresponding 
P values, Pearson correlation coefficients and annotations from the Human Protein 
Atlas are provided in Supplementary Table 12, while the number of samples in this 
analysis can be found in Supplementary Table 29. Selected significantly correlating 
proteins are presented as scatter plots, with MS signal in liver biopsy as a function 
of that in plasma.

Functional annotation and enrichment analysis. Ontology enrichment analysis 
in the liver proteomics dataset was performed with ClueGo, a plug-in in Cytoscape 
(v.3.6.1), with default settings. A customized reference set containing 4,651 unique 
genes (quantified in this study) was used in Fisher’s exact test. Term significance 
was corrected by Benjamini–Hochberg with FDR <1%. Both Gene Ontology 
term fusion and grouping were activated. Significantly enriched Reactome and 
associated proteins are provided in Supplementary Tables 2 and 3.

Liver‐specific proteins were annotated according to the Human Protein Atlas, 
which defines ‘liver-enriched’, ‘group-enriched’ and ‘liver-enhanced’ proteins with 
at least fivefold higher messenger RNA levels in liver compared with all other 
tissues, at least fivefold higher mRNA levels in a group of between two and seven 
tissues compared with the remainder and at least fivefold higher mRNA levels in 
the liver compared with average levels in all tissues, respectively.

Machine learning models. The machine learning part of this manuscript was 
conducted with the intention to identify biomarker panels for identification 
of different types of hepatic lesions. A graphic representation of the overall 
machine learning workflow can be found in Supplementary Fig. 2. In brief, we 
first determined binary classification targets based on clinical relevance followed 
by feature selection for each of these classification targets. We then built logistic 
regression models based on the selected marker panels for each target and 
evaluated the model performance by both cross-validation and in the test set of a 
final train–test split. We benchmarked the model performance against 15 existing 
best-in-class clinical tests including two types of elastography, the ELF blood test, 
P3NP, FibroTest, FIB-4, Forns test and APRI test for fibrosis, cytokeratin-18 based 
markers M30 and M65 and M30/M65, together with transaminases ALT, AST 
and AAR for inflammation, and controlled CAP for steatosis. We then assessed 
model performance in regard to ruling out disease in low-incidence populations 
and validated it in regard to ruling in disease in an independent ALD cohort. Last, 
we assessed the prognostic performance of the proteomics models by performing 
survival analyses and prognostic analyses on patients in the GALA–ALD cohort 
using risk scores generated by the models.

The rationale for determining binary classification targets is as follows: we 
treated each pathological feature—fibrosis, inflammatory activity and steatosis—as 
an independent entity and aimed to identify the presence of early-stage lesions, 
and hence the following binary classification targets. We chose significant fibrosis 
(≥F2) over advanced fibrosis (≥F3) because there is an urgent clinical need to 
predict early-stage fibrosis and a lack of available biomarkers for this outcome. In 
addition, up to 20% of patients with ALD and moderate fibrosis (F2) experienced 
liver-related events during a median 4 years of follow-up23, highlighting the need 
to include this condition. Similarly, we chose the binary targets of inflammatory 
activity and steatosis based on clinical relevance: the presence of mild 
inflammatory activity and above (≥I2) has been shown to be a predictor of rapid 
progression of chronic liver disease due to alcohol abuse, but there is no evidence 
that clearly supports a dose–response relationship between inflammation and 
progression rate. The presence of any steatosis (≥S1) is a marker of the adverse 
effect of alcohol on the liver and constitutes a diagnostic part of alcohol-related 
fatty liver disease. Detection of liver steatosis at an early stage, followed by lifestyle 
modification and close monitoring, may benefit a person’s health on their further 
journey in life.

More specifically, in the GALA–ALD cohort, 360 patients had liver biopsy- 
verified stages of fibrosis (360), inflammation (352) and steatosis (352), as well as 
clinical data to varying degrees of missing values from best-in-class clinical tests. 
For example, SWE measurement was available for 331 individuals, M65 for 264 
and CAP for 199. Two of these patients were excluded due to insufficient proteome 
depth having been quantified. To account for missing data across patients, and 
to have comparable subsets of patients when benchmarking model performance 
against each other, we defined a pattern of data missingness based on each patient’s 
pattern of availability for all considered variables, and split each train-and-test set 
based on this pattern of data missingness.

Proteomics data used for machine learning were processed in the same way 
as for statistical and bioinformatics analyses, for overall consistency. Briefly, the 
plasma proteome dataset was filtered for a minimum of 200 quantified proteins 
as the threshold of sufficient proteome depth. This was followed by filtering for 
60% valid values across all samples, with the remaining missing values imputed 
by drawing random samples from a normal distribution with downshifted mean 
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by 1.8 s.d. and scaled s.d. (0.3) relative to that of abundance distribution (log2 
transformed) of all proteins within each sample. We then filtered proteins for a 
maximum of 30% of coefficient of variation calculated from analytical replicates 
(quality assessment samples) to ensure good analytical reproducibility of the 
selected proteins.

We determined three binary classification targets based on clinical relevance: 
significant fibrosis (F0–1 versus F2–4, 200 controls, 160 cases); mild inflammatory 
activity (I0–1 versus I2–5, 153 controls, 189 cases); and any liver steatosis (S0 
versus S1–3, 156 controls, 196 cases). In addition, we included the prediction of 
advanced fibrosis (F0–2 versus F3–4, 266 controls, 94 cases). The proportion of 
positive class was 54–56% in ≥F2, ≥I2 and ≥S1 and 26% in ≥F3). We performed 
feature selection using a Python implementation (https://github.com/smazzanti/
mrmr) of the mRMR feature selection algorithm. We assessed the relationship 
between model performance and number of features (from one to 50) based 
on fivefold, ten times cross-validation (Supplementary Fig. 3a–c). We set the 
maximum number of features to 50 out of practical considerations: a marker 
panel based on a relatively small set of proteins may be easier to translate and 
implement into clinical practice, and also more robust, because too many 
hyperparameters in a high-dimensional space may lead to an overfitting problem. 
We then determined the optimal number of features (or marker panels) for each 
classification target according to the ‘maximal F1 score using the minimal set of 
proteins’ principle. To show the superior performance of a composite maker panel 
over a single protein-based prediction model (best-performing protein), we include 
the comparison in Supplementary Fig. 3d. To provide an indication of feature 
importance in predictions, we report their coefficients in the logistic regression 
models in Supplementary Fig. 3e–h.

After selection of marker panels for each classification target, we evaluated 
their classification performance in the discovery cohort in two ways: (1) mean 
model performance in the test sets of fivefold ten times cross-validation (80% 
training and 20% test split in each of the 50 cross-validations based on the  
pattern of data missingness described above); and (2) model performance in 
the test set of a finally fitted model based on a random train–test split on which 
DeLong’s test was performed for the statistical comparison of AUCs. For clinical 
comparators we used both clinically recommended fixed cutoffs and logistic 
regression-determined cutoffs to ensure fair comparison. Fixed clinical cutoffs can 
be viewed as a threshold model that is not fitted to specific data. The metrics  
for comparison are precision, recall, F1 score and balanced accuracy (Supple
mentary Tables 15 and 17). DeLong’s test results can be found in Supplementary 
Table 18.

The cross-validation procedure is intended to give an overview on model 
performance variance from random data splits. We used the scikit-learn (sklearn 
library version 0.23.2) module sklearn.model_selection.RepeatedStratifiedKFold 
to implement the fivefold ten times cross-validation procedure. This procedure 
was intended to give a better representation of model performance variance from 
random data splits. In each fivefold cross-validation, the entire sample set in the 
discovery cohort was split into five smaller sets (folds 1–5), with stratification 
based on the pattern of data missingness described above. These five smaller sets 
were then partitioned into five train–test pairs by iterating each as a test set. In 
each of these, we trained a logistic regression model independently on the training 
set (four sets) and validated the resulting model on the test set (one set). This 
fivefold cross-validation procedure was then repeated ten times with different 
randomization in each repetition, resulting in a total of 50 train–test pairs (and 
50 trained models), and the average model performance in the 50 test sets was then 
computed and presented. The ten times cross-validations were independent from 
each other in the sense that default parameters (except for 'solver', which we set to 
'liblinear' considering the relatively small dataset) to the scikit learn linear logistic 
regression model were used throughout all models and no hyperparameter was 
optimized, and that model coefficients were determined separately in each model. 
The sample size in the train–test splits in the 50 cross-validation procedure is 
286/72 train/test for fibrosis model F2, and 280/70 train/test for the inflammation 
and steatosis models. The final model is supposed to ease comparison with 
follow-up data on patients in the GALA–ALD cohort and to have an explicit 
comparison based on one model. The final model was also used to perform 
rule-out validation in lower-incidence populations and external validation in an 
independent ALD cohort (model performance is given in Supplementary Tables 
19 and 20), which were not used for training or feature selection. Performance of 
the proteomics models in the validation cohort of ALD was likewise benchmarked 
against 11 best-in-class clinical tests available for the cohort with ROC–AUC as the 
evaluation metric (Supplementary Table 21).

Net reclassification improvement was calculated for all three proteomics 
models (F2, I2 and S1) against existing clinical tests at their established cutoffs 
based on the formula defined in the original paper49. Data used for NRI calculation 
are a combination of the test set of the finally fitted model in the derivation cohort 
(n = 72, not exposed to training) and the independent validation cohort (n = 63). 
In each comparison the F2, I2 or S1 proteomics model serves as the new model 
while the clinical test in comparison serves as the baseline model. The formula is 
as follows:

NRI = P (up|event) − P (down|event) + P (down|nonevent) − P (up|nonevent)
(1)

NRIe = P (up|event) − P (down|event) (2)

NRIne = P (down|nonevent) − P (up|nonevent) (3)

For assessment of prognostic capability, we extracted liver-related events  
and all-cause mortality that occurred during the follow-up period of 53 months 
(IQR 34–74) from 457 patients in the GALA–ALD cohort, and 2,035 person-years 
from electronic health records at hospitals in the Region of Southern Denmark, 
combined with the Danish National Registry of central personal identification 
numbers. We defined a liver-related event as the occurrence of any of the 
following: alcoholic hepatitis, varices needing treatment, variceal bleeding, ascites, 
spontaneous bacterial peritonitis, hepatic encephalopathy, HCC, hepatorenal 
syndrome, upper gastrointestinal bleeding or jaundice due to liver failure. Harrell’s 
C-index and ROC–AUC for prediction of liver-related events and all-cause 
mortality at 3 years, 5 years and the entire follow-up period were computed  
in Stata software (Stata BE v.17). We then compared the prognostic performance  
of the proteomics marker panels with competing commercial biomarkers  
and liver histological lesions as reference23. The number of samples used in  
the assessment of diagnostic and prognostic capability can be found in 
Supplementary Table 29.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The human reference proteome (2018 release, both canonical and additional 
sequences) was downloaded from the European Bioinformatics Institute database 
(https://ftp.ebi.ac.uk/pub/databases/reference_proteomes/). Tissue specificity 
annotation of proteins was downloaded from the Human Protein Atlas database 
(https://www.proteinatlas.org/about/download). All results from statistical and 
bioinformatics analysis are provided in the Supplementary Tables. Due to the 
need to maintain patient confidentiality, patient and proteomics data generated 
in this study cannot be made publicly available. Averaged protein levels in the 
liver and plasma proteomes, and paired protein–histologic score data, have 
been deposited in the GitHub repository (https://github.com/llniu/ALD-study, 
subfolder ALD-App), which contains the Dashboard application ALD_app.py and 
the datasets needed to run on a local machine. The full proteomics datasets and 
histologic scoring generated and/or analyzed during the current study are available 
from the authors upon request, to Odense Patient Data Exploratory Network 
(open@rsyd.dk) with reference to project ID OP_040. Permission to access and 
analyze data can be obtained following approval from the Danish Data Protection 
Agency and the ethics committee for the Region of Southern Denmark. The study 
protocol, standard operating procedures and patient information are also available 
upon request. The time frame for response to requests from the authors is within 
a 1-month period. When applying and processing data, certain restrictions apply: 
(1) a data processing agreement must be signed between the data controller and 
processor; (2) data must not be processed for purposes other than statistical  
and scientific studies; and (3) personal data must be deleted, anonymized and 
destroyed at the end of investigation and must not be passed on to a third party 
or individuals who are not authorized to access the data. Source data are provided 
with this paper.

Code availability
All python scripts used in this study can be reviewed and downloaded at the 
Github repository https://github.com/llniu/ALD-study. Specifically, the subfolder 
ALD-ML contains the Jupyter Notebook ALD_ML.ipynb (scripts for the machine 
learning pipeline), ALD_ML_STATA.ipynb (scripts for survival analysis in STATA) 
and ALD_META_ML.ipynb (scripts for comparison of state-of-the-art machine 
learning classifiers); the subfolder ALD-PA contains the Jupyter Notebook ALD_
PA.ipynb (scripts for proteomics data processing, ANCOVA, partial correlation and 
pairwise correlation analysis); and the subfolder ALD-App contains the Dashboard 
application ALD_app.py and the datasets needed to run on a local machine.
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Extended Data Fig. 1 | Proteomics workflow. a-c. Proteome profiling workflow for liver biopsy samples. d-f. Proteome profiling workflow for plasma samples. 
g. Computational and bioinformatics tools used for processing and analyzing proteomics data.
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Extended Data Fig. 2 | Proteomics data quality. a,d. Pair-wise Pearson correlation between proteomes of the workflow replicates in the plasma (a) and 
liver (d) proteomics experiments. b, e. The coefficients of variation (CV) of each protein assessed by quality assessment samples are plotted against their 
median intensity, with (b) showing the plasma- and (e) showing the liver proteomics experiment. c, f. Protein intensity as a function of abundance rank in 
the plasma- and liver proteomes (c and f, respectively).
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Extended Data Fig. 3 | Histologic score distributions. a. Stage distribution of fibrosis (based on Kleiner score), inflammatory activity (summed lobular 
inflammation and ballooning scores) and steatosis (percentage of hepatic fat content) in patients whose liver biopsy proteomes were analyzed (n = 79).  
b. Stage distribution of fibrosis, inflammatory activity, and steatosis in patients whose plasma proteome were analyzed and passed quality control 
(n = 358). c. Stage distribution of fibrosis, inflammatory activity, and steatosis in the independent validation cohort of ALD (n = 63). Note that the number 
of patients in each sub-group may not add up to the total number due to missing histological scores.
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Extended Data Fig. 4 | Remodeled plasma proteome due to hepatic lesions. a. Proteins in plasma significantly differentially abundant across stages/
scores of fibrosis, inflammatory activity and steatosis in the disease cohort with biopsy-verified histologic scores (FDR-corrected p-value < 0.05). 
n = 35/124/106/27/66 biologically independent samples for Kleiner score 0/1/2/3/4; n = 72/90/82/53/30/23 biological independent samples for 
NAS inflammation score 0/1/2/3/4/5; and n = 154/85/72/39 for NAS steatosis score 0/1/2/3. b. Hierarchical clustering of significantly dysregulated 
plasma proteins. Row clustering was based on median log2-intensity after Z-score normalization across fibrosis stages HP-F0-F4. c. Ratios of up- 
and downregulated proteins of ‘liver-specific’ and ‘secreted’ proteins. d. Fold change (fibrosis stage F4/F0) of significant proteins when using the 
whole dataset (n = 358) and the subset with paired liver proteomes available (n = 79) e. Top 20 plasma proteins that correlate with the Kleiner score, 
inflammatory activity, and steatosis stages. f. Distribution of log2-intensity values of top four correlating proteins in plasma for each histologic score. 
Number of independent biological replicates is the same as Panel (a). The gray line in the middle of the box is the median, the top and the bottom  
of the box represent the upper and lower quartile values of the data and the whiskers represent the upper and lower limits for considering outliers 
(Q3 + 1.5*IQR, Q1‐1.5*IQR). IQR is the interquartile range (Q3–Q1).
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Extended Data Fig. 5 | Model performance among state-of-the-art classifiers. a-c. The F1 score of all classifiers for predicting significant fibrosis (F2, a),  
mild inflammatory activity (I2, b), and any steatosis (S1, c). Classifiers were ranked in decreasing order of F1 score. d-f. The area under the receiver 
operating characteristics curve (ROC-AUC) of all classifiers for predicting F2 (d), I2 (e), and S1 (f). Classifiers were ranked in decreasing order of 
ROC-AUC.
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Extended Data Fig. 6 | Abundance distribution of proteins in the selected marker panels. a-c. Proteins comprising the marker panels for identifying 
significant fibrosis (a), mild inflammatory activity (b) and any steatosis (c), and their abundance distribution (log2-transformed) as a function of 
corresponding histologic stages. The gray line in the middle of the box is the median, the top and the bottom of the box represent the upper and 
lower quartile values of the data and the whiskers represent the upper and lower limits for considering outliers (Q3 + 1.5*IQR, Q1‐1.5*IQR). IQR is the 
interquartile range (Q3–Q1). For Panel (a), n = 35/124/106/27/66 biologically independent samples for Kleiner score 0/1/2/3/4 except for protein ASAP1 
which has n = 30/94/62/13/24; For panel (b), n = 72/90/82/53/30/23 biological independent samples for NAS inflammation score 0/1/2/3/4/5 except 
for protein ALDOB which has n = 49/72/65/50/29/22. For panel (c), n = 154/85/72/39 for NAS steatosis score 0/1/2/3 except for protein ALDOB 
which has n = 97/80/71/39.
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Extended Data Fig. 7 | Distribution of individual components of the liver-related event composite endpoint. Percentage of occurrence of each liver-related 
events during the follow-up period. Abbreviations: AH, alcoholic hepatitis; HCC, hepatocellular carcinoma; HE, hepatic encephalopathy; HRS, hepatorenal 
syndrome; SBP, spontaneous bacterial peritonitis.
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