

The gut-liver axis in alcohol related liver disease

OUH Odense University Hospital

SDU 🎓

University of Southern Denmark

Odense Liver Research Centre

Denmark

Agenda

- Chronic liver disease and alcohol-related liver disease
- Gut-liver axis hypothesis
- *Results from three intervention studies from GALAXY/MICROBLIVER*
- Discussion

White board

Gines 2021, Lancet

Alcohol-related liver disease

(ALD)

Kim 2018, Gastroenterology

Thiele 2018, Gastroenterology

medicine

ARTICLES https://doi.org/10.1038/s41591-022-01850-y

OPEN Noninvasive proteomic biomarkers for alcohol-related liver disease

Lili Niu^{® 1,2}, Maja Thiele^{® 3,4}, Philipp E. Geyer^{2,5}, Ditlev Nytoft Rasmussen³, Henry Emanuel Webel¹, Alberto Santos^{1,8}, Rajat Gupta^{1,9}, Florian Meier^{® 2,6}, Maximilian Strauss^{® 1,2}, Maria Kjaergaard^{® 3}, Katrine Lindvig³, Suganya Jacobsen³, Simon Rasmussen^{® 1}, Torben Hansen^{® 7}, Aleksander Krag^{® 3} and Matthias Mann^{® 1,2}

Methods

Results

Conclusion

Combined data from Sanyal 2021, NEJM & Rasmussen 2021, J Hep

Methods

Results

Conclusion

Rasmussen 2021, J Hep

Rasmussen 2021, J Hep

*Moos 2006, Addiction

The gut-liver axis

- a target for therapy?

Portal venous

Wiest 2017, J HEP

Tripathi 2018, Nature Rev

Hartmann 2016, ACER

Szabo 2015, Gastro

Methods

Results

Conclusion

Albillos 2020, J Hep

AlcoChallenge - Ethanol

GALA-RIF - Rifaximin

Referm® study - Postbiotic

AlcoChallenge

IMPACT OF BINGE DRINKING ON GUT AND CIRCULATING MICROBIOME IN EARLY ALD

Mads Israelsen, Camila Alvarez Silva, Bjørn Stæhr Madsen, Stine Johansen, Camilla Dalby Hansen, Nikolaj Christian Torp, Johanne Kragh Hansen, Helene Bæk Juel, Thorsten Brach, Katrine Lindvig, Jean-Louis Insonere, Virginie Riviere, Benjamin Lelouvier, Lars Juhl Jensen, Torben Hansen, Manimozhiyan Arumugam, Aleksander Krag, on behalf of the MicrobLiver consortium

Novo Nordisk Foundation CENTER FOR BASIC METABOLIC RESEARCH

FLASH UVER RESEARCH CENTRE

MicrobLiver

Gut permeability in the spectrum of ALD

We aimed to study the effect of acute alcohol consumption on gut leakiness in early stages of alcohol-related liver disease

Background	Methods	Results	Conclusion		
Design	Inclusion criteria	Participant characteristics			
Type: Pathophysiological intervention study	General inclusion criteriaAge 30-75Informed consent		ſ	†	7
Groups: 3	General exclusion criteriaAbstinence/desire of abstinence	Age, years	ALD (F1-F3) N = 14 54.7 (±2.7)	NAFLD (F1-F3) N = 14	Healthy (F0) N = 8 53.4 (±3.2)
Group A (ALD) N = 14	• Biopsy verified ALD (F1-F3)	Gender, Male/Female Daily use of alcohol, g	12/2 60 (24-120)	7/7	4/4 6 (0-6)
Group B (NAFLD) N = 14	Biopsy verified NAFLD (F1-F3)	BMI, kg/m ²	28.6 (±6.3)	35.3 (±7.0)	24.9 (±3.0)
Group C (Healthy) N = 8	 Daily alcohol intake < 24 g BMI < 30, No diabetes Liver stiffness < 6 kPa 	Liver Stiffness by TE, kPa	9 (5.9-11)	10.4 (9.5-11.4)	4.55 (3.9-5)

Results

Methods

Results

Conclusion

Alcohol concentration over time

Circulating microbial DNA quantity (16S qPCR)

Research in context

Limitations

- Small sample size
- Two days abstinence

The GALA-RIF study

A randomised double-blind, placebo-controlled trial of

rifaximin-α in alcohol-related liver disease

Mads Israelsen, MD, PhD Twitter 💓 @IsraelsenMads

Mads Israelsen, Bjørn Stæhr Madsen, Nikolaj Torp, Stine Johansen, Camilla Dalby Hansen, Sönke Detlefsen, Peter Andersen, Johanne Kragh Hansen, Katrine Prier Lindvig, Ditlev Nytoft Rasmussen, Katrine Thorhauge, Maria Kjærgaard, Torben Hansen, Manimozhiyan Arumugam, Jonel Trebicka, Maja Thiele, Aleksander Krag *The GALAXY and MicrobLiver consortia*

OUH Odense University Hospital

University of Southern Denmark

Hartman 2016, Alcohol Clin Exp Res Szabo 2015, Gastroenterology Bass 2010, NEJM

Patel 2021, J Hep

We aimed to investigate the **efficacy** and **safety** of **rifaximin-α** on liver **fibrosis** in patients with **biopsy-confirmed ALD**

Methods

Background	Methods	Results	Conclusion
Design	Р	atients	Intervention
Type Investigator-initiated Randomised (1:1) Double-blind 	Inclusion • 18-75 y • Biopsy-0	criteria ears confirmed ALD	 18 months: Tablet rifaximin-α 550 mg twice daily
 Placebo-controlled Stratification Fibrosis stage Abstinence 	 Main exc Decom cirrhosi Coexist Recent (<4 web 	usion criteria pensated is ent liver disease use of antibiotics eks)	OR • Tablet placebo twice daily

Background Methods

Results

Conclusion

Outcome

Primary outcome

• Regression of fibrosis (decrease ≥1 fibrosis stage)

Secondary outcomes

- Progression of fibrosis (increase ≥1 fibrosis stage)
- Non-invasive tests
- Adverse events

Professor Sönke Detlefsen

Results

Background Methods

Results

Conclusion

Study flow

March 2015 - November 2021

Drop-out rate = 21 %

Results

Conclusion

Baseline characteristics

Routine liver tests				
GGT (U/L)	93 (41-237)			
ALT (U/L)	38 (25-55)			
Alkaline phosphatase (U/L)	79 (69-99)			
Bilirubin (umol/L)	10 (7-14)			
Platelet count (10 ⁹ /L)	224 (179-263)			
INR	1 (0.9-1.2)			
Albumin (g/L)	43 (41-45)			
All summary data are medians (25%-75% percentile)				

Results

Conclusion

Baseline: Distribution of liver fibrosis

Efficacy of intervention

Results

Histology

Endpoint	Rifaximin group	Control group			Odds	Ratio	o (95%	CI)		
	no. of events/	'total no. (%)								
Fibrosis										
Regression vs no regression	14/54 (26)	15/54 (28)		⊢				1.	10 (0.45-2.68)	1
Progression vs no progression	13/54 (24)	23/54 (43)	⊢ ⊢	-•	-			0.4	42 (0.18-0.98)	,
Inflammation										
Regression vs no regression	27/54 (50)	18/54 (33)	F					0.	50 (0.22-1.11)	
Progression vs no progression	5/54 (9)	5/54 (9)	F					1.	00 (0.27-3.69)	ł
Steatosis										
Regression vs no regression	11/54 (20)	11/54 (20)		I	-•			1.	02 (0.39-2.70)	,
Progression vs no progression	14/54 (26)	19/54 (35)	F					0.	64 (0.28-1.47)	,
			0.125 0.25	0.5	1	2	4	8		
			•							
			Rifaximin	-α Better	r (Contro	ol Bette	r		

Non-invasive markers

B Gamma-glutam

4

Adverse events

	Rifaximin-α	Placebo
Adverse events	48 (71%)	53 (78%)
 Most common adverse event, GI-symptoms 	26 (38%)	32 (47%)
Serious adverse events	15 (21%)	14 (21%)

No cases of infection with C. difficile or MDR bacteria

Limitations

Strengths

- Single centre
- Unequal sex distribution

- 18 months intervention
- NITs support the histological findings
- High compliance

Conclusion

Rifaximin- α does not promote regression of liver fibrosis - but it seems to prevent progression of liver fibrosis

Rifaximin- α may be beneficial for patients with alcohol-related liver disease who cannot achieve alcohol abstinence

The gut-liver axis appears to be a modifiable target in early alcoholrelated liver disease

- Are therapies targeting the gut-liver axis the future treatment for ALD?

Portal venous

Wiest 2017, J HEP

Tripathi 2018, Nature Rev

Hartmann 2016, ACER

Szabo 2015, Gastro

• Promising results

Cons

Endpoint	Rifaximin group	Control group	Odds Ratio (9	5% CI)
	no. of events/	total no. (%)		
Fibrosis				
Regression vs no regression	14/54 (26)	15/54 (28)	F	1.10 (0.45-2.68)
Progression vs no progression	13/54 (24)	23/54 (43)	⊢ ⊸−4	0.42 (0.18-0.98)
Inflammation				
Regression vs no regression	27/54 (50)	18/54 (33)	⊢	0.50 (0.22-1.11)
Progression vs no progression	5/54 (9)	5/54 (9)	· · · · · · · · · · · · · · · · · · ·	1.00 (0.27-3.69)
Steatosis				
Regression vs no regression	11/54 (20)	11/54 (20)	⊢ •1	1.02 (0.39-2.70)
Progression vs no progression	14/54 (26)	19/54 (35)		0.64 (0.28-1.47)
		0.	r r r r r r r r r r r r r r r r r r r	8 etter

- Promising results
- RCTs in ALD are feasible

Cons

GALA-RIF study flow

March 2015 - November 2021

Drop-out rate = 21 %

- Promising results
- RCTs in ALD are feasible
- Large disease burden

- Promising results
- RCTs in ALD are feasible
- Large disease burden
- Blue ocean

Cons

- Promising results
- RCTs in ALD are feasible
- Large disease burden
- Blue ocean

Cons

Unclear mode of action

- Promising results
- RCTs in ALD are feasible
- Large disease burden
- Blue ocean

Cons

- Unclear mode of action
- Several interventions

- Promising results
- RCTs in ALD are feasible
- Large disease burden
- Blue ocean

Cons

- Unclear mode of action
- Several interventions
- Underlying cause

National Institutes of Health (NIH)

Acknowledgements

University of Copenhagen Evelina Stankevic Tobias Wistisen Camila Alvarez Silv Lise Ryborg Helene Bæk Juel Manimozhiyan Arumugam Torben Hansen

Department of Biochemistry, OUH Lea Grip Mette Møller Andreasen Anette Tyrsted Mikkelsen Münster University Hospital Jonel Trebicka Robert Schierwagen

Nordic Bioscience Mette Juul Nielsen Diana Leeming Morten Karsdal

Odense University Hospital Pharmacy Lene Sehested

GCP monitor Tanja Busk Bidstrup

Odense Liver Research Centre

Bjørn Madsen Camilla Dalby Hansen Nikolaj Torp Stine Johansen Charlotte Wernberg Mette Munk Lauridsen Ditlev Rasmussen Ida Villesen Jane Møller Jensen Maria Kjærgaard Trine Møller Charlotte Damby Jensen Minna Ingham Line Jensen Maria Fogt Helle Lindholm Schnefeld Peter Andersen Julie Hansen Katrine Thorhauge Johanne Kragh Katrine Lindvig Louise Just Maja Thiele Aleksander Krag

Supported by European Union's Horizon 2020 Research and Innovation Program,668031 Novo Nordisk Foundation Challenge Grant "MicrobLiver", NNF15OC0016692

Funding

This study has obtained financial support from Horizon 2020, the European Union's Program for Science and Innovation (fund number 668031), the Novo Nordisk Foundation Challenge Program, Odense University Hospital, the University of Southern Denmark, Region of Southern Denmark, the Knud and Edith Eriksens Memorial Foundation, the Beckett Foundation, and the Foundation of 17–12-1981.

Norgine was partner in the EU Horizon 2020 consortium "Galaxy". Trial medication was sponsored **unconditionally and free** of charge by Norgine Denmark A/S

OUH Odense University Hospital

University of Southern Denmark